Меню Рубрики

Активаторы и ингибиторы гормонов

Активаторы и ингибиторы ферментов

Регуляция активности ферментов может осуществляться путём взаимодействия ферментов с различными биологическими компонентами или чужеродными соединениями, которые называются регуляторами ферментов. Они могут либо ускорять, либо замедлять ферментативную реакцию.

Активаторы ферментов

– это вещества, увеличивающие скорость ферментативной реакции.

1. Вещества, влияющие на область активного центра. К ним относятся ионы металлов (Na+, K+, Fe2+, Co2+, Cu2+, Ca2+, Zn2+, Mg2+, Mn2+ и др.). В ряде случаев ионы металлов выполняют функцию кофактора фермента. В других случаях они способствуют присоединению субстрата к активному центру фермента. Ионы металлов оказываются активаторами только в условиях дефицита их в организме.

2. Аллостерические эффекторы, которые связываются с аллостерическим (регуляторным) участком апофермента. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению структуры активного центра, что сказывается на связывании и превращении субстрата в активном центре. При этом активность фермента либо увеличивается (это аллостерические активаторы), либо уменьшается (это аллостерические ингибиторы). Аллостерическими эффекторами ферментов наиболее часто выступают различные метаболиты, а также гормоны, ионы металлов, нуклеозиды — АТФ, АДФ, АМФ.

3. Вещества, вызывающие модификации, не затрагивающие активный центр фермента. Возможно несколько вариантов таких модификаций:

— активация путём присоединения специфической модифицирующей группы к молекуле фермента.

Отрицательно заряженные фосфатные группы могут разрывать слабые водородные и ионные связи в третичной структуре белка-фермента и влиять на конформационное состояние его активного центра. В зависимости от природы фермента фосфорилирование может его активировать или, наоборот, инактивировать. Реакции присоединения фосфатной группы катализируют ферменты протеинкиназы, а отщепления – фосфатазы. Активность этих ферментов в свою очередь находится под контролем гормональной системы.

— активация путём перехода неактивного предшественника — профермента в активный фермент за счёт частичного протеолиза.

Некоторые ферменты синтезируются в клетке первоначально неактивными и после секреции из клетки переходят в активную форму. Неактивные предшественники называются проферменты (зимогены). Под действием активатора происходит частичный гидролиз профермента с отщеплением от него неактивного пептида, в результате чего открывается активный центр. Так происходит активация ферментов желудочно-кишечного тракта, переваривающих белки пищи. Например, фермент пепсиноген, синтезированный в клетках желудка, затем в просвете желудка под действием соляной кислоты превращается в активный пепсин путём удаления неактивного участка полипептидной цепи:

— активатор вызывает диссоциацию субъединиц фермента, имеющего четвертичную структуру (отщепление одной из субъединиц фермента).

Ингибиторы ферментов

Ингибиторами называют вещества, вызывающие снижение активности фермента. Следует различать инактивацию и ингибирование фермента. Сам по себе факт торможения ферментативной реакции в присутствии какого-либо вещества ещё не говорит о том, что это вещество – ингибитор. Любые денатурирующие агенты вызывают инактивацию фермента и торможение ферментативной реакции. Ингибиторы, в отличие от денатурирующих агентов, действуют в малых концентрациях и вызывают специфическое снижение ферментативной активности.

По прочности связывания с ферментом ингибиторы делятся на обратимые и необратимые. Необратимые ингибиторы прочно связываются с ферментом, тогда как комплекс фермент – обратимый ингибитор непрочен. Если сильно разбавить раствор фермента с обратимым ингибитором, то их комплекс распадается и активность фермента восстанавливается.

Механизмы действия ингибиторов ферментов

По механизму действия ингибиторы делятся на конкурентные и неконкурентные.

Конкурентные ингибиторы имеют структурное сходство с молекулой субстрата, что позволяет им занять место субстрата в активном центре фермента:

Встраиваясь вместо субстрата в активный центр, такой ингибитор не даёт ферментативной реакции осуществиться. То есть, субстрат конкурирует с ингибитором за активный центр. С активным центром связывается то соединение, молекул которого больше. Снять конкурентное ингибирование можно, увеличив концентрацию субстрата.

На принципе конкурентного ингибирования основано действие многих фармакологических препаратов (например, сульфаниламидных), инсектицидов, фосфорорганических боевых отравляющих веществ (зарин, зоман).

Неконкурентные ингибиторы не имеют структурного сходства с субстратами. Они или связываются с каталитическими группами активного центра фермента, или, связываясь с ферментом вне активного центра, изменяют конформацию активного центра таким образом, что это препятствует превращению субстрата. Поскольку неконкурентный ингибитор не влияет на связывание субстрата, то в отличие от конкурентного ингибирования наблюдается образование тройного комплекса:

К неконкурентным ингибиторам относятся ионы тяжёлых металлов: ртути, свинца, кадмия, мышьяка. Они блокируют SH-группы, входящие в каталитический участок фермента. Снять действие неконкурентного ингибитора избытком субстрата, как при конкурентном ингибировании, нельзя, а можно лишь веществами, связывающими ингибитор (реактиваторами). Тяжелые металлы лишь в небольших концентрациях играют роль ингибиторов, в больших концентрациях они действуют как денатурирующие агенты.

Наиболее важными неконкурентными ингибиторами являются образующиеся в живой клетке промежуточные продукты метаболизма, способные обратимо связываться с аллостерическими участками фермента – аллостерические ингибиторы. Они занимают ключевое положение в метаболизме, поскольку тонко реагируют на изменения в обмене веществ и регулируют прохождение веществ по целой системе ферментов. Например, аллостерическая регуляция проявляется в виде ингибирования конечным продуктом первого фермента цепи. Эта регуляция сходна с регуляцией по механизму обратной связи и позволяет контролировать выход конечного продукта, в случае накопления которого прекращается работа первого фермента цепи

источник

Активаторы и ингибиторы ферментов

Активаторы и ингибиторы ферментов

Регуляция активности ферментов может осуществляться путём взаимодействия ферментов с различными биологическими компонентами или чужеродными соединениями, которые называются регуляторами ферментов. Они могут либо ускорять, либо замедлять ферментативную реакцию.

Активаторы – это вещества, увеличивающие скорость ферментативной реакции.

1. Вещества, влияющие на область активного центра. К ним относятся ионы металлов (Na + , K + , Fe 2+ , Co 2+ , Cu 2+ , Ca 2+ , Zn 2+ , Mg 2+ , Mn 2+ и др.). В ряде случаев ионы металлов выполняют функцию кофактора фермента. В других случаях они способствуют присоединению субстрата к активному центру фермента. Ионы металлов оказываются активаторами только в условиях дефицита их в организме.

2. Аллостерические эффекторы, которые связываются с аллостерическим (регуляторным) участком апофермента. Это связывание вызывает конформационные изменения в молекуле белка, приводящие к изменению структуры активного центра, что сказывается на связывании и превращении субстрата в активном центре. При этом активность фермента либо увеличивается (это аллостерические активаторы), либо уменьшается (это аллостерические ингибиторы). Аллостерическими эффекторами ферментов наиболее часто выступают различные метаболиты, а также гормоны, ионы металлов, нуклеозиды — АТФ, АДФ, АМФ.

3. Вещества, вызывающие модификации, не затрагивающие активный центр фермента. Возможно несколько вариантов таких модификаций:

активация путём присоединения специфической модифицирующей группы к молекуле фермента. Пример: регуляция активности липазы.

неактивная АТФ АДФ активная О

─СН2ОН ─СН2─О─Р─ОН

фосфатаза

В этом случае фосфатная группа присоединяется к гидроксильным группам аминокислот, находящихся в белковой части фермента. Отрицательно заряженные фосфатные группы могут разрывать слабые водородные и ионные связи в третичной структуре белка-фермента и влиять на конформационное состояние его активного центра. В зависимости от природы фермента фосфорилирование может его активировать или, наоборот, инактивировать. Реакции присоединения фосфатной группы катализируют ферменты протеинкиназы, а отщепления – фосфатазы. Активность этих ферментов в свою очередь находится под контролем гормональной системы.

Читайте также:  Что делать при нарушении гормонов

активация путём перехода неактивного предшественника — профермента в активный фермент за счёт частичного протеолиза.

Некоторые ферменты синтезируются в клетке первоначально неактивными и после секреции из клетки переходят в активную форму. Неактивные предшественники называются проферменты (зимогены). Под действием активатора происходит частичный гидролиз профермента с отщеплением от него неактивного пептида, в результате чего открывается активный центр. Так происходит активация ферментов желудочно-кишечного тракта, переваривающих белки пищи. Например, фермент пепсиноген, синтезированный в клетках желудка, затем в просвете желудка под действием соляной кислоты превращается в активный пепсин путём удаления неактивного участка полипептидной цепи:

пепсиноген пепсин + пептид

активатор вызывает диссоциацию субъединиц фермента, имеющего четвертичную структуру (отщепление одной из субъединиц фермента).

Ингибиторами называют вещества, вызывающие снижение активности фермента. Следует различать инактивацию и ингибирование фермента. Сам по себе факт торможения ферментативной реакции в присутствии какого-либо вещества ещё не говорит о том, что это вещество – ингибитор. Любые денатурирующие агенты вызывают инактивацию фермента и торможение ферментативной реакции. Ингибиторы, в отличие от денатурирующих агентов, действуют в малых концентрациях и вызывают специфическое снижение ферментативной активности.

По прочности связывания с ферментом ингибиторы делятся на обратимые и необратимые. Необратимые ингибиторы прочно связываются с ферментом, тогда как комплекс фермент – обратимый ингибитор непрочен. Если сильно разбавить раствор фермента с обратимым ингибитором, то их комплекс распадается и активность фермента восстанавливается.

По механизму действия ингибиторы делятся на конкурентные и неконкурентные. Конкурентные ингибиторы имеют структурное сходство с молекулой субстрата, что позволяет им занять место субстрата в активном центре фермента:

Встраиваясь вместо субстрата в активный центр, такой ингибитор не даёт ферментативной реакции осуществиться. То есть, субстрат конкурирует с ингибитором за активный центр. С активным центром связывается то соединение, молекул которого больше. Снять конкурентное ингибирование можно, увеличив концентрацию субстрата.

На принципе конкурентного ингибирования основано действие многих фармакологических препаратов (например, сульфаниламидных), инсектицидов, фосфорорганических боевых отравляющих веществ (зарин, зоман).

Неконкурентные ингибиторы не имеют структурного сходства с субстратами. Они или связываются с каталитическими группами активного центра фермента, или, связываясь с ферментом вне активного центра, изменяют конформацию активного центра таким образом, что это препятствует превращению субстрата. Поскольку неконкурентный ингибитор не влияет на связывание субстрата, то в отличие от конкурентного ингибирования наблюдается образование тройного комплекса:

К неконкурентным ингибиторам относятся ионы тяжёлых металлов: ртути, свинца, кадмия, мышьяка. Они блокируют SH-группы, входящие в каталитический участок фермента. Снять действие неконкурентного ингибитора избытком субстрата, как при конкурентном ингибировании, нельзя, а можно лишь веществами, связывающими ингибитор (реактиваторами). Тяжелые металлы лишь в небольших концентрациях играют роль ингибиторов, в больших концентрациях они действуют как денатурирующие агенты.

Наиболее важными неконкурентными ингибиторами являются образующиеся в живой клетке промежуточные продукты метаболизма, способные обратимо связываться с аллостерическими участками фермента – аллостерические ингибиторы. Они занимают ключевое положение в метаболизме, поскольку тонко реагируют на изменения в обмене веществ и регулируют прохождение веществ по целой системе ферментов. Например, аллостерическая регуляция проявляется в виде ингибирования конечным продуктом первого фермента цепи. Эта регуляция сходна с регуляцией по механизму обратной связи и позволяет контролировать выход конечного продукта, в случае накопления которого прекращается работа первого фермента цепи:

А → В → С → D

Е1, Е2, Е3 – ферменты; А, В, С, D — метаболиты

источник

Активаторы и ингибиторы

Каталитическая функция ферментов зависит от влияния различных веществ, одни из которых повышают скорость реакций, а другие – понижают. В соответствии с воздействием на фермент все вещества можно разделить на активаторы и ингибиторы.

Активаторы – вещества, повышающие активность ферментов. Они способны защищать ферменты от агрессивных химических воздействий. В ряде случаев, например, свободный цистеин защищает сульфгидрильные (SH-) группы цистеиновых остатков фермента от окисления. Mg 2+ — активирует реакции с участием АДФ и АТФ.

Ингибиторы – вещества, угнетающие действие ферментов. Механизм их действия состоит в том что ингибитор вступает в соединение с ферментом, образуя неактивный ингибитор-фермент комплекс вместо комплекса фермент-субстрат, что приводит к блокированию фермента.

Ингибирование может быть неспецифическим и специфическим.

При неспецифическом ингибировании наблюдается действие солей тяжелых металлов (Pb 2+ ; Hg 2+ ; Cd 2+ ), тонина; CCl3COOH на белковые молекулы, которые образуют с белками нерастворимые осадки, вызывая их осаждение. Его могут вызывать также концентрированные кислоты и щелочи, органические растворители.

Действие специфических ингибиторов основано на специфическом связывании с определенными группами в активном центре фермента. Например, СО (окись углерода) специфически ингибирует ряд окислительных ферментов, соединенных в активном центре Fe или Cu. Они вступают во взаимодействие с металлами, блокируют активный центр.

Ингибирование может быть обратимым и необратимым.

При необратимом ингибировании ингибитор ковалентно соединяется с ферментом или связывается очень прочно. Примером может служить действие нервнопаралитических газов на ацетилхолинэстеразу, играющую важную роль в передаче нервных импульсов. При этом ингибитор приводит к необратимому изменению структуры фермента и его инактивации, являясь денатурирующим агентом. Необратимые ингибиторы — это сильные кислоты, щелочи, спирт, цианиды и т.д.

Примером обратимого ингибирования служит конкурентное ингибирование. В качестве конкурентных ингибиторов могут выступать соединения близкие по структуре к субстрату, обладающие иногда большим сродством к ферменту, чем субстрат. Они занимают место в активном центре фермента, блокируя его. Этот тип ингибирования является обратимым. Чем выше концентрация субстрата, тем меньше сказывается действие ингибитора. Например, малоновая кислота COOH-CH2-COOH – конкурентный ингибитор сукцинатдегидрогеназы, субстратом которой является янтарная кислота (сукцинат) COOH- CH2 -CH2-COOH.

Частным случаем конкурентного ингибирования является субстратное ингибирование. Оно наблюдается при слишком высоких концентрациях субстрата. В этом случае активный центр фермента блокируется за счет того, что одновременно несколько молекул пытаются с ним связаться.

Неконкурентное ингибирование. В этом случае ингибитор соединяется с ферментом не по активному центру, при этом меняется конфигурация всей молекулы фермента, в том числе и активного центра, ингибируя его (снижая его активность). Например, HCN (синильная кислота) действует на железосодержащие ферменты, осуществляющие перенос электронов при окислительно-восстановительных реакциях. Тяжелые металлы действуют путем присоединения по тиоловым SH– группам ферментов. Их действие не снимается добавлением субстрата.

Часто активаторы и ингибиторы называют эффекторами.

Эффекторы – химические соединения, влияющие на ход ферментативных реакций. Они могут быть активаторами («+» эффекторами) или ингибиторами («-» эффекторами).

Читайте также:  Как правильно сдать кровь на половые гормоны женские

Классификация ферментов

Официальная классификация ферментов была принята в 1961 г. В соответствии с этой классификацией название фермента должно отра­жать тип катализируемой реакции.

Все ферменты подразделяют на 6 групп:

1. Оксидоредуктазы — катализируют реакции окисления и восс­тановления. Большая часть оксидоредуктаз имеет коферменты.

Оксидазы — ферменты, использующие для окисления субстрата молекулярный кислород.

Гидроксилазы — ферменты, преобразующие в присутствии О2

Дегидрогеназы — катализируют отщепление водорода от окисляе­мых субстратов.

2. Трансферазы — отрывают химическую группу от одного соеди­нения, связывают ее, а затем присоединяют к другому соединению:

Трансаминазы — переносят аминогруппу с АК на кетокислоты.

Фосфокиназы (или просто киназы) — переносят остаток фосфорной кислоты на АДФ или от АТФ на субстрат.

3. Гидролазы — катализируют разрыв химической связи с присо­единением молекулы воды.

Эстеразы — гидролизуют сложные эфиры с образованием кислоты и спирта.

Липазы — гидролизуют глицериды на глицерин и жирные кислоты.

Гликозидазы — гидролизуют гликозиды на сахарид и спирт.

4. Лиазы — катализируют разрыв связей С-С, C-N, C-O, C-S.

Декарбоксилазы — катализируют реакции декарбоксилирования:

Альдолазы — катализируют разрыв гексозофосфатов на 2 молеку­лы триозофосфатов.

5. Изомеразы — катаризируют различные процессы изомеризации.

Эпимеразы — вызывают взаимные переходы сахаров, например, галактоза ↔ глюкоза.

Мутазы — катализируют перенос химических групп с одной части молекулы на другую, например глюкозо-6-фосфатмутаза катализирует превращение глюкозо-6 фосфата в глюкозо-1 фосфат.

6. Лигазы — катализируют процессы конденсации двух сочетаю­щихся молекул за счет энергии распада АТФ:

Аминоацил-тРНК-синтетазы — присоединяют АК к молекуле транс­портной РНК. Это первый этап синтеза белка.

Дата добавления: 2014-11-25 ; Просмотров: 3148 ; Нарушение авторских прав? ;

Нам важно ваше мнение! Был ли полезен опубликованный материал? Да | Нет

источник

Активаторы и ингибиторы ферментов

Активаторами называют вещества, которые повышают активность ферментов. Примером таких соединений являются аминокислота цистин и восстановленный глютатион, содержащие свободную –SH-группу. Их активирующее действие заключается в том, что они восстанавливают дисульфидные связи с образованием –SH-групп, необходимых для проявления каталитической активности тиоловых ферментов. Кроме того, некоторые ферменты активируются металлами, которые либо участвуют в построении активного центра, либо стабилизируют пространственную конформацию ферментного белка и тем самым обеспечивают проявление каталитических функций. Активность фермента α-амилазы слюны человека повышается в присутствии анионовClˉ.

Ингибиторы замедляют скорость биохимических реакций, а в ряде случаев полностью приостанавливают её. Процесс ингибирования может быть обратимым и необратимым. При необратимом ингибировании ингибитор ковалентно связывается с ферментом, необратимо изменяя его нативную конформацию. После удаления ингибитора активность фермента не восстанавливается.

Одним из широко известных типов необратимого ингибирования является действие алкилирующих агентов, образующих прочные ковалентные связи с –SH- группами фермента. Необратимыми ингибиторами также являются цианиды, подавляющие активность ферментов цитохромов, содержащих железо; этилендиаминтетраацетат (ЭДТА), подавляющий действие α-амилазы, за счёт связывания с ионамиCa +2 (кофактораα-амилазы).

При обратимом ингибировании активность фермента восстанавливается после удаления ингибитора. Обратимые ингибиторы бывают конкурентного, неконкурентного, бесконкурентного и смешанного действия.

Первая группа – это близкие аналоги субстратов, содержащие весь набор или, по крайней мере, большую часть групп, узнаваемых активным центром фермента, и поэтому образующие комплекс фермент-ингибитор, сходный с комплексом фермент-субстрат. Однако в силу специфики своей структуры они не подвергаются ферментативному превращению. Занимая активный центр, эти ингибиторы препятствуют связыванию субстрата и тем самым протеканию ферментативной реакции. Они фактически конкурируют с субстратом за взаимодействие с активным центром и поэтому их называют конкурентными ингибиторами. Например, структурные аналоги янтарной кислоты – щавелевая, малоновая, щавелево-уксусная – являются конкурентными ингибиторами фермента сукцинатдегидрогеназы, катализирующей окисление янтарной кислоты в фумаровую:

Янтарная Щавелевая Малоновая Щавелево-

кислота кислота кислота уксусная кислота

Конкурентное ингибирование может быть снято при увеличении концентрации субстрата.

Неконкурентное ингибирование отличается от конкурентного тем, что оно не может быть снято увеличением концентрации субстрата. Неконкурентный ингибитор подавляет каталитическое превращение субстрата в продукты реакции. Полагают, что при неконкурентном ингибировании ингибитор связывается с функционально важной группой фермента, не препятствуя связыванию субстрата, при этом деформируется активный центр, что приводит к нарушению комплементарности к субстрату и снижению активности фермента.

Бесконкурентное ингибирование наблюдается в том случае, когда ингибитор связывается с фермент-субстратным комплексом ES, переводя его в неактивную форму.

При смешанном ингибировании ингибитор действует как на участок связывания, так и на каталитический центр фермента.

источник

Активаторы и ингибиторы ферментов

Активаторами называют вещества, которые повышают активность ферментов. Примером таких соединений являются аминокислота цистин и восстановленный глютатион, содержащие свободную –SH-группу. Их активирующее действие заключается в том, что они восстанавливают дисульфидные связи с образованием –SH-групп, необходимых для проявления каталитической активности тиоловых ферментов. Кроме того, некоторые ферменты активируются металлами, которые либо участвуют в построении активного центра, либо стабилизируют пространственную конформацию ферментного белка и тем самым обеспечивают проявление каталитических функций. Активность фермента α-амилазы слюны человека повышается в присутствии анионов Clˉ.

Ингибиторы замедляют скорость биохимических реакций, а в ряде случаев полностью приостанавливают её. Процесс ингибирования может быть обратимым и необратимым. При необратимом ингибировании ингибитор ковалентно связывается с ферментом, необратимо изменяя его нативную конформацию. После удаления ингибитора активность фермента не восстанавливается.

Одним из широко известных типов необратимого ингибирования является действие алкилирующих агентов, образующих прочные ковалентные связи с –SH- группами фермента. Необратимыми ингибиторами также являются цианиды, подавляющие активность ферментов цитохромов, содержащих железо; этилендиаминтетраацетат (ЭДТА), подавляющий действие α-амилазы, за счёт связывания с ионами Ca +2 (кофактора α-амилазы).

При обратимом ингибировании активность фермента восстанавливается после удаления ингибитора. Обратимые ингибиторы бывают конкурентного, неконкурентного, бесконкурентного и смешанного действия.

Первая группа – это близкие аналоги субстратов, содержащие весь набор или, по крайней мере, большую часть групп, узнаваемых активным центром фермента, и поэтому образующие комплекс фермент-ингибитор, сходный с комплексом фермент-субстрат. Однако в силу специфики своей структуры они не подвергаются ферментативному превращению. Занимая активный центр, эти ингибиторы препятствуют связыванию субстрата и тем самым протеканию ферментативной реакции. Они фактически конкурируют с субстратом за взаимодействие с активным центром и поэтому их называют конкурентными ингибиторами. Например, структурные аналоги янтарной кислоты – щавелевая, малоновая, щавелево-уксусная – являются конкурентными ингибиторами фермента сукцинатдегидрогеназы, катализирующей окисление янтарной кислоты в фумаровую:

Янтарная Щавелевая Малоновая Щавелево-

кислота кислота кислота уксусная кислота

Конкурентное ингибирование может быть снято при увеличении концентрации субстрата.

Неконкурентное ингибирование отличается от конкурентного тем, что оно не может быть снято увеличением концентрации субстрата. Неконкурентный ингибитор подавляет каталитическое превращение субстрата в продукты реакции. Полагают, что при неконкурентном ингибировании ингибитор связывается с функционально важной группой фермента, не препятствуя связыванию субстрата, при этом деформируется активный центр, что приводит к нарушению комплементарности к субстрату и снижению активности фермента.

Читайте также:  Гормон отвечающий за жирность волос

Бесконкурентное ингибирование наблюдается в том случае, когда ингибитор связывается с фермент-субстратным комплексом ES, переводя его в неактивную форму.

При смешанном ингибировании ингибитор действует как на участок связывания, так и на каталитический центр фермента.

Не нашли то, что искали? Воспользуйтесь поиском:

источник

Вопрос 19 Активаторы и ингибиторы ферментов. Механизм их действия. Обратимое и необратимое, конкурентное и неконкурентное ингибирование. Использование принципа конкурентного ингибирования в медицине.

.Активаторы и ингибиторы ферментов, механизмы их влияния и значение.

На скорость химических реакций оказывают влияние различные вещества. По характеру влияния вещества подразделяются на активаторы, увеличивающие активность ферментов, и ингибиторы (парализаторы), подавляющие активность ферментов.

Активирование ферментов могут вызывать:

Присутствие кофакторов – ионы металлов Fe²+, Mg²+, Mn²+, Cu²+, Zn²+, АТФ, липоевая кислота.

Ферменты желудочно-кишечного тракта вырабатываются в виде неактивных форм – зимогенов. Под влиянием различных факторов происходит отщепление пептида с формированием активного центра и зимоген превращается в активную форму фермента.

Пепсиноген НСl пепсин + пептид

Трипсиноген энтерокиназа трипсин + пептид

Этот вид активирования предохраняет клетки желудочно-кишечного тракта от самопереваривания.

Фосфорилирование и дефосфорилирование. Например:

неакт. липаза + АТФ → липаза-фосфат (акт. липаза);

липаза-фосфат+Н3РО4 → липаза (неакт. липаза)

Ингибиторы по характеру своего действия подразделяются на обратимые и необратимые. В основе такого деления лежит прочность соединения ингибитора с ферментом.

Обратимые ингибиторы – это соединения, которые нековалентно взаимодействуют с ферментом и могут отщепляться от фермента.

Необратимые ингибиторы – это соединения, которые образуют ковалентные, прочные связи с ферментом.

Необратимое ингибирование может быть специфическим и неспецифическим.

При специфическом ингибировании ингибиторы тормозят действие определенных ферментов, связывая отдельные функциональные группы активного центра. Например, тиоловые яды ингибируют ферменты, в активный центр которых входят SН-группы; угарный газ (СО) ингибирует ферменты, имеющие в активном центре Fe²+.

Неспецифические ингибиторы тормозят действие всех ферментов. К ним относятся все денатурирующие факторы (высокая температура, органические и минеральные кислоты, соли тяжелых металлов и др.).

Обратимое ингибирование может быть конкурентным. При этом ингибитор является структурным аналогом субстрата и конкурирует с ним за связывание в субстратсвязывающем участке активного центра.

Отличительная особенность конкурентного ингибирования состоит в том, что его можно ослабить или полностью устранить, повысив концентрацию субстрата.

Сукцинатдегидрогеназа (СДГ) – фермент цитратного цикла, дегидрирует сукцинат, превращая его в фумарат. Малонат, который структурно похож на сукцинат, связывается в активном центре СДГ, но не может дегидрироваться. Поэтому малонат – конкурентный ингибитор СДГ.

Многие лекарственные препараты являются конкурентными ингибиторами ферментов. Например, сульфаниламидные препараты, являясь структурными аналогами парааминобензойной кислоты (ПАБК) – основного фактора роста болезнетворных микроорганизмов, конкурируют с ней за связывание в субстратсвязывающем участке активного центра фермента. На этом основано противомикробное действие сульфаниламидных препаратов.

источник

Механизм действия активаторов

Зависимость скорости ферментативных реакций от присутствия активаторов и ингибиторов.

Активаторы – вещества, повышающие скорость ферментативных реакций. Различают специфические активаторы, повышающие активность одного фермента (НСl — активатор пепсиногена) и неспецифические активаторы, увеличивающие активность целого ряда ферментов (ионы Mg – активаторы гексокиназы, К, Na –АТФ-азы и других ферментов). В качестве активаторов могут служить ионы металлов, метаболиты, нуклеотиды.

  1. Достраивание активного центра фермента, в результате чего облегчается взаимодействие фермента с субстратом. Таким механизмом обладают в основном ионы металлов.
  2. Аллостерический активатор взаимодействует с аллостерическим участком (субъединицей) фермента, через его изменения опосредованно изменяет структуру активного центра и увеличивает активность фермента. Аллостерическим эффектом обладают метаболиты ферментативных реакций, АТФ.
  3. Аллостерический механизм может сочетаться с изменением олигомерности фермента. Под действием активатора происходит объединение нескольких субъединиц в олигомерную форму, что резко увеличивает активность фермента. Например, изоцитрат является активатором фермента ацетил-КоА карбоксилазы.
  4. Фосфолирирование — дефосфолирирование ферментов относится к обратимой модификации ферментов. Присоединение Н3РО4 чаще всего резко увеличивает активность фермента. Например, два неактивных димера фермента фосфорилазы соединяются с четырьмя молекулами АТФ и образуют активную тетрамерную фосфорилированную форму фермента. Фосфолирирование ферментов может сочетаться с изменением их олигомерности. В некоторых случаях фосфорилирование фермента, наоборот, снижает его активность (например, фосфорилирование фермента гликогенсинтетазы)
  5. Частичный протеолиз (необратимая модификация). При этом механизме от неактивной формы фермента (профермента) отщепляется фрагмент молекулы, блокирующий активный центр фермента. Например, неактивный пепсиноген под действием HCL переходит в активный пепсин.

Ингибиторы– вещества, понижающие активность фермента.

По специфичности выделяют специфичные и неспецифичные ингибиторы

По обратимости эффекта различают обратимые и необратимые ингибиторы.

По месту действия встречаются ингибиторы, действующие на активный центр и вне активного центра.

По механизму действия различают на конкурентные и неконкурентные ингибиторы.

Конкурентное ингибирование.

Ингибиторы этого типа имеют структуру, близкую к структуре субстрата. В силу этого ингибиторы и субстрат конкурируют за связывание активного центра фермента. Конкурентное ингибирование — это обратимое ингибирование Эффект конкурентного ингибитора может быть уменьшен путём повышения концентрации субстрата реакции

Примером конкурентного ингибирования может служить угнетение активности сукцинатдегидрогеназы, катализирующей окисление дикарбоновой янтарной кислоты, дикарбоновой малоновой кислотой, сходной по структуре с янтарной кислотой.

Принцип конкурентного ингибирования широко используется при создании лекарственных средств. Например, сульфаниламидные препараты имеют структуру, близкую к структуре парааминобензойной кислоты, необходимой для роста микроорганизмов. Сульфаниламиды блокируют ферменты микроорганизмов, необходимые для усвоения парааминобензойной кислоты. Некоторые противоопухолевые препараты являются аналогами азотистых оснований и, тем самым, ингибируют синтез нуклеиновых кислот (фторурацил).

Графически конкурентное ингибирование имеет вид:

Неконкурентное ингибирование.

Неконкурентные ингибиторы структурно не имеют схожести с субстратами реакций и поэтому не могут вытесняться при высокой концентрации субстрата. Существует несколько вариантов действия неконкурентных ингибиторов:

  1. Блокирование функциональной группы активного центра фермента и, вследствие этого, уменьшение активности. Например, активность SН — групп могут связывать тиоловые яды обратимо (соли металлов, ртути, свинца) и необратимо (монойодацетат). Эффект ингибирования тиоловых ингибиторов может быть уменьшен введением добавочных веществ, богатых SH группами (например, унитиол). Встречаются и используются сериновые ингибиторы, блокирующие ОН — группы активного центра ферментов. Таким эффектом обладают органические фосфофторсодержащие вещества. Эти вещества могут, в частности, ингибировать ОН — группы в ферменте ацетилхолинэстеразе, разрушающей нейромедиатор ацетилхолин.
  2. Блокирование ионов металлов, входящих в состав активного центра ферментов. Например, цианиды блокируют атомы железа, ЭДТА (этилендиаминтетраацетат) блокирует ионы Са, Mg.
  3. Аллостерический ингибитор взаимодействует с аллостерическим участком, опосредованно через него по принципу кооперативности, меняя структуру и активность каталитического участка. Графически неконкурентное ингибирование имеет вид:

Максимальная скорость реакции при неконкурентном ингибировании не может быть достигнута путём повышения концентрации субстрата.

Не нашли то, что искали? Воспользуйтесь поиском:

источник