Белки гормоны название белка

Белковые гормоны: описание, свойства, функции и строение

Гормоны — мельчайшие элементы, вырабатываемые нашим организмом. Однако без них невозможно ни существование человека, ни прочих живых систем. В статье мы приглашаем вас познакомиться с одной их разновидностью — белковыми гормонами. Приведем особенности, функции и описание данных элементов.

Что такое гормоны?

Начнем с ключевого понятия. Слово произошло от греч. ὁρμάω — «возбуждаю». Это органические биологически активные вещества, которые вырабатываются собственными железами внутренней секреции организма. Поступая в кровь, связываясь с рецепторами определенных клеток, они регулируют физиологические процессы, обмен веществ.

Белковые гормоны (как и все иные) — это гуморальные (переносимые в крови) регуляторы конкретных процессов, происходящих в органах и их системах.

Самое широкое определение: химические сигнальные вещества, вырабатываемые одними клетками организма для влияния на другие части тела. Гормоны синтезируются и позвоночными, к которым мы с вами относимся (специальными эндокринными железами), и животными, что лишены традиционной кровеносной системы, и даже растениями.

Главные функции гормонов

Эти регуляторы, к которым относятся белковые гормоны, призваны осуществлять в организме целый ряд функций:

  • Стимуляция или подавление роста.
  • Смена настроения.
  • Стимуляция или подавления апоптоза — гибели старых клеток в организме.
  • Стимуляция и подавление функций защитной системы организма — иммунитета.
  • Регуляция метаболизма — обмена веществ.
  • Подготовка организма к активным действиям, физическим нагрузкам — от бега до борьбы и спаривания.
  • Подготовка живой системы к важному периоду развития или функционирования — половому созреванию, беременности, родам, угасанию.
  • Контроль репродуктивного цикла.
  • Регуляция чувства насыщения и чувства голода.
  • Вызов полового влечения.
  • Стимуляция выработки других гормонов.
  • Самая важная задача — это поддержание гомеостаза организма. То есть, постоянства его внутренней среды.

Разновидности гормонов

Раз мы выделяем белковые гормоны, значит, существует определенная градация этих биологически активных веществ. По классификации их разделяют на следующие группы, отличающиеся своим особым строением:

  • Стероиды. Это химические полициклические элементы, имеющие липидную (жировую) природу. В основе структуры — стерановое ядро. Именно оно ответственно за единство их полиморфного класса. Даже малейшие различия стерановой основы будут обуславливать различия свойств гормонов данной группы.
  • Производные жирных кислот. Эти соединения отличает высокая нестабильность. Оказывают местное воздействие на расположенные по соседству клетки. Второе название — эйкозаноиды. Разделяются на тромбоксаны, простагландины и лейкотриены.
  • Производные аминокислот. В частности, это все же производные элемента тирозина — адреналин, тироксин, норадреналин. Синтезируются (образуются, вырабатываются) щитовидной железой, надпочечниками.
  • Гормоны белковой природы. Сюда входят и белковые, и пептидные, оттого второе название — белково-пептидные. Это гормоны, что вырабатывает поджелудочная железа, а также гипофиз и гипоталамус. Среди них важно выделить инсулин, гормон роста, кортикотропин, глюкагон. С некоторыми из гормонов белково-пептидной природы мы познакомимся подробнее на протяжении статьи.

Белковая группа

Отличается среди всех перечисленных своей разнообразностью. Вот основные гормоны, ее «населяющие»:

  • Гипоталамусовые рилизинг-факторы.
  • Тропные гормоны, вырабатывающиеся аденогипофизом.
  • Регуляторные вещества, выделяемые эндокринной тканью поджелудочной железы, — глюкагон и инсулин. Последний отвечает за должный уровень глюкозы (сахара) в крови, регулирует ее поступление в клетки мускулатуры и печени, где вещество обращается в гликоген. Если инсулин не вырабатывается или выделяется организмом недостаточно, у человека развивается сахарный диабет. Глюкагон и адреналин схожи по своему действию. Они, напротив, повышают содержание сахара в кровяной массе, способствуя распаду гликогена в печени — при этом процессе и образуется глюкоза.
  • Гормон роста. Соматотропин ответственен и за рост скелета, и за увеличение массы тела живого существа. Его недостаток приводит к аномалии — карликовости, избыток — к гигантизму, акромегалии (непропорционально большим рукам, ступням, голове).

Синтез в гипофизе

Данный орган вырабатывает большую часть белково-пептидных гормонов:

  • Гонадотропный гормон. Стимулирует процессы в организме, связанные с размножением. Ответственен за образование половых гормонов в половых железах.
  • Соматомедин. Гормон роста.
  • Пролактин. Гормон белкового обмена, ответственен за функциональность молочных желез, а также за выработку ими казеина (белка молока).
  • Полипептидные низкомолекулярные гормоны. Эти соединения влияют уже не на дифференцировку клеток, а на определенные физиологические процессы организма. Например, вазопрессин и окситоцин регулируют артериальное давление, «следят» за работой сердца.

Синтез в поджелудочной железе

В данном органе происходит синтез белковых гормонов, контролирующих углеводный обмен в организме. Это уже упомянутые нами инсулин и глюкагон. Сама по себе данная железа — экзокринная. Она также вырабатывает ряд пищеварительных ферментов, которые затем поступают в двенадцатиперстную кишку.

Всего лишь 1 % ее клеток будет находиться в составе так называемых островков Лангерганса. К ним относятся две особые разновидности частиц, которые функционируют, как эндокринные железы. Именно они и вырабатывают альфа-клетки (глюкагон) и бета-клетки (инсулин).

Кстати, современные ученые уже отмечают, что действие инсулина не ограничивается стимуляцией обращения глюкозы в гликоген в клетках печени. Этот же гормон ответственен за некоторые процессы пролиферации и дифференцировки во всех клетках.

Синтез в почках

В данном органе вырабатывается только один вид — эритропоэтин. Функции белковых гормонов данной группы — регуляция дифференцировки эритроцитов в селезенке и костном мозге.

Что касается синтеза самой белковой группы, то это достаточно сложный процесс. В нем задействована нервная центральная система — она действует через рилизинг-факторы.

Еще в тридцатые годы прошлого века советским исследователем Завадовским М. М. была открыта система, которую он назвал «плюс-минус-взаимодействие». Хорош пример данного закона регуляции на основе синтеза тироксина в щитовидке и синтеза в гипофизе тиреотропного гормона. Что мы видим здесь? Плюс-действие в том, что тиреотропный гормон будет стимулировать выработку щитовидной железой тироксина. А каково же минус-действие? Тироксин, в свою очередь, подавляет выработку гипофизом тиреотропного гормона.

В результате регуляции «плюс-минус-взаимодействие» мы отмечаем поддержание в крови постоянного обмена тироксина. При его недостатке деятельность щитовидки будет стимулироваться, а при избытке — подавляться.

Действие белковой группы

Давайте проследим теперь за действием белковых гормонов:

  1. Сами по себе они не проникают в клетку-мишень. Элементы находят на ее поверхности специальные белковые рецепторы.
  2. Последние «узнают» гормон и определенным образом связываются с ним.
  3. Связка будет, в свою очередь, активировать фермент, находящийся на внутренней стороны мембраны клетки. Его название — аденилатциклаза.
  4. Данный фермент начинаем превращать АТФ в циклическую АМФ (цАМФ). В иных случаях подобным образом из ГТФ получается цГМФ.
  5. цГМФ или цАМФ далее проследует в клеточное ядро. Там она будет активировать особые ядерные ферменты, фосфорилирующие белки — негистоновые и гистоновые.
  6. Итог — активация определенного набора генов. Например, в половых клетках начинают работать те, что ответственны за выработку стероидов.
  7. Последний этап всего описанного алгоритма — соответствующая дифференцировка.

Инсулин

Инсулин — белковый гормон, известный практически каждому человеку. И не случайно — он самый изученный на сегодня.

Ответственен за многогранное влияние на обмен веществ практически во всех тканях организма. Однако главное его предназначение — регуляция концентрации глюкозы в крови:

  • Увеличивает проницаемость плазматической клеточной массы для глюкозы.
  • Активирует ключевые фазы, ферменты гликолиза — процесса окисления глюкозы.
  • Стимулирует образование из глюкозы гликогена в специальных клетках мышц и печени.
  • Усиливает синтез белков и жиров.
  • Подавляет активную деятельность ферментов, расщепляющих жиры и белки. Иными словами, обладает и анаболическим, и антикатаболическим эффектом.

Абсолютная недостаточность инсулина приводит к развитию сахарного диабета первого типа, относительная недостаточность — к развитию диабета второго типа.

Молекулу инсулина образуют две полипептидные цепи, имеющие 51 аминокислотный осадок: А — 21, В — 30. Их соединяют два дисульфидных мостика через цистеиновые остатки. Третья дисульфидная связь располагается в А-цепи.

Инсулин человека отличается от инсулина свиньи всего одним аминокислотным остатком, от бычьего — тремя.

Гормон роста

Соматотропин, СТГ, соматотропный гормон — это все его названия. Гормон роста вырабатывается передней долей гипофиза. Его относят к полипептидным гормонам — также в этой группе пролактин и лактоген плацентарный.

Основное действие следующее:

  • У детей, подростков, молодых людей — ускорение линейного роста за счет удлинения трубчатых длинных костей конечностей.
  • Мощное антикатаболическое и анаболическое действие.
  • Усиление синтеза белка и торможение его распада.
  • Способствуют уменьшению отложений подкожных запасов жира.
  • Усиливает сгорание жира, стремится выровнять соотношение мышечной и жировой массы.
  • Повышает уровень глюкозы в крови, выступая антагонистом инсулина.
  • Участвует в углеводном обмене.
  • Воздействие на островковые участки поджелудочной железы.
  • Стимуляция поглощения костной тканью кальция.
  • Иммуностимуляция.

Кортикогормон

Другие названия — адренокортикотропный гормон, кортикотропин, кортикотропный гормон и проч. Состоит из 39-ти аминокислотных остатков. Вырабатывается базофильными клетками передней части гипофиза.

  • Контроль за синтезом и секрецией гормонов коры надпочечников, пучковой области. Его мишени — кортизон, кортизол, кортикостерон.
  • Попутно стимулирует образование эстрогенов, андрогенов, прогестерона.

Белковая группа — одна из важных в семействе гормонов. Является самой разнообразной по функциям, областям синтеза.

источник

Гормоны-белки: функции в организме человека, примеры

Основные разновидности гормонов

Наибольшее распространение получила классификация гормонов в зависимости от их химической структуры. Они подразделяются на такие виды:

  • гормоны-белки, которые могут быть простыми и сложными;
  • биологически активные вещества пептидной природы: кальцитонин, окситоцин, соматостатин, глюкагон, вазопрессин;
  • производные аминокислот: тироксин, адреналин;
  • биологически активные вещества липидной природы: кортикостероиды, женские и мужские половые гормоны;
  • тканевые гормоны: гепарин, гастрин.

Как уже было отмечено выше, гормоны-белки делятся еще на два подвида:

  • простые: инсулин, соматотропный гормон, пролактин;
  • сложные: лютропин, фолликулостимулирующий гормон, тиреотропный гормон.

Примеры гормонов-белков и их функции целесообразно рассматривать в зависимости от того, в каком органе они синтезируются. А это могут быть следующие структуры организма:

Биологически активные вещества гипоталамуса

Абсолютно все вещества, которые вырабатываются гипоталамусом, относятся к группе гормонов-белков и полипептидов. Их основная функция — регулировать выработку гормонов в гипофизе. В зависимости от того, каким образом они осуществляют эту функцию, выделяют несколько разновидностей:

  • рилизинг-гормоны повышают активность гипофиза;
  • статины угнетают синтез биологически активных веществ гипофизом;
  • гормоны задней доли не оказывают влияния на активность гипофиза, накапливаются в его задней части, прежде чем выделиться в кровь.

Гипоталамус опосредованно через гипофиз влияет на функцию щитовидной железы и надпочечников, половой системы, регулирует рост человека.

Рилизинг-гормоны гипоталамуса

К рилизинг-гормонам относятся следующие вещества:

  • соматотропин рилизинг-гормон (СРГ);
  • тиреотропин рилизинг-гормон (ТРГ);
  • гонадотропин рилизинг-гормон (ГнРГ);
  • кортикотропин рилизинг-гормон (КРГ).

Функция белков-гормонов данной группы заключается в повышении синтеза соответствующих биологически активных веществ в гипофизе. Так, СРГ стимулирует выработку соматотропного гормона и пролактина, ТРГ усиливает производство тиреотропного гормона, ГнРГ повышает синтез лютеинизирующего и фолликулостимулирующего гормонов, КРГ увеличивает выработку кортикотропина. При чем все тропные гормоны образуются в передней доле гипофиза (всего их три).

КРГ имеет не только биологическую, но и нейрональную активность. Поэтому его еще относят к классу нейропептидов. Благодаря передаче КРГ в нервных синапсах у человека возникают ощущения тревоги, страха, беспокойства, нарушение сна и аппетита, снижение половой активности. При длительном воздействии кортикотропин рилизинг-гормона развиваются стойкие психические нарушения: депрессия, тревожность, бессонница, истощение организма.

ТРГ также относят к классу нейропептидов. Он участвует в осуществлении определенных психических функций. Например, установлена его антидепрессивная активность.

Синтез ГнРГ имеет некоторую цикличность. Он вырабатывается несколько минут через каждые 1-3 часа.

Биологически активные вещества гипофиза

Гормоны-белки — это также вещества, которые синтезируются в передней и задней долях гипофиза. Причем в передней области производятся тропные гормоны, а в задней образование новых веществ не происходит, но накапливаются окситоцин и вазопрессин, которые ранее синтезировались в гипоталамусе.

К тропным относятся такие пептидные и белковые структуры:

  • адренокортикотропный гормон (АКТГ);
  • тиреотропный гормон (ТТГ);
  • лютеинизирующий гормон (ЛГ);
  • фолликулостимулирующий гормон (ФСГ).

Все они оказывают стимулирующее влияние на периферические железы внутренней секреции. Так, АКТГ повышает активность надпочечников, ТТГ активирует щитовидную железу, а ЛГ и ФСГ — гонады.

Отдельно выделяют эффекторные биологически активные вещества. Они не регулируют функцию желез внутренней секреции, а стимулируют органы, которые находятся вне эндокринной системы.

Адренокортикотропный гормон

Адренокортикотропный гормон прямо связан с надпочечниками, а именно с его корой. Он повышает синтез и выделение в кровяное русло кортикостероидов. Характерным является то, что происходит стимуляция только двух слоев коры надпочечников — пучковой и сетчатой. Клубочковая зона, где синтезируются минералокортикоиды, не находится под влиянием тропных биологически активных веществ гипофиза.

Размеры АКТГ небольшие. Он состоит всего из 39 остатков аминокислот. Его концентрация в крови, по сравнению с остальными гормонами, не очень высокая. Синтез этого вещества имеет четкую зависимость от времени суток. Это называется циркадным ритмом. Максимальное его количество в крови наблюдается в утреннее время при пробуждении организма. Это связано с необходимостью мобилизовать все силы организма после сна. Также количество этих гормонов-белков повышается при стрессовых ситуациях.

Помимо влияния АКТГ на кору надпочечников, он также действует на структуры, которые не относятся к эндокринной системе. Так, он увеличивает распад липидов в жировой ткани.

При повышении активности надпочечников, например при синдроме Иценко-Кушинга, по механизму обратной связи выработка АКТГ уменьшается. Это, в свою очередь, угнетает синтез кортикотропин рилизг-гормона в гипоталамусе.

Тиреотропный гормон

Тиреотропный гормон, или ТТГ, состоит из двух частей: альфа и бета. Альфа-часть ТТГ сходна с таковой у гонадотропных гормонов, а бета-чать присуща только тиреотропину. ТТГ регулирует рост щитовидной железы, обеспечивая ее увеличение в размерах. Это вещество также повышает синтез тироксина и трийодтиронина — главных гормонов щитовидной железы, которые необходимы для нормального обмена веществ в организме.

Рилизинг-гормоны гипоталамуса влияют на выработку ТТГ в гипофизе. Здесь также работает механизм обратной связи: при повышенной активности щитовидной железы (тиреотоксикозе) угнетается синтез ТТГ в гипофизе, и, наоборот.

Гонадотропный гормон

Гонадотропные гормоны (ГнТГ) у млекопитающих, в том числе и у людей, представлены фолликулостимулирующим (ФСГ) и лютеинизирующим (ЛГ) гормонами. Они отличаются не только по своей структуре, но и по функциям. Причем они несколько отличны в зависимости от пола. У женщин ФСГ стимулирует рост и дозревание фолликулов, мужчинам он нужен для образования семенных канатиков и дифференциации сперматозоидов.

ЛГ у девушек участвует в образовании желтого тела в яичниках, овуляции. У мужчин эти гормоны-белки осуществляют функцию секреции тестостерона семенниками. Причем тестостерон вырабатывается не только у мужчин, но и у женщин.

Отвечая на вопрос, какие гормоны-белки стимулируют выработку ФСГ и ЛГ гормонов в гипофизе, стоит отметить, что это лишь один гормон. Он получил название гонадотропин рилизинг-гормона. Помимо активности периферических эндокринных желез, синтез ГнРГ регулируется органами центральной нервной системы (лимбической частью головного мозга).

Эффекторные гормоны передней доли гипофиза

Эффекторные гормоны-белки выполняют функцию стимуляции активности внутренних органов, которые находятся за пределами эндокринной системы. К ним относятся:

Соматотропный гормон

Соматотропный гормон или гормон роста — это крупный белок, который включается в себя 191 аминокислотный остаток. Его строение очень похожу на структуру другого гормона гипофиза — пролактина.

Основная функция соматотропина — стимуляция роста костей и всего организма в целом. Процесс роста под влиянием соматотропина осуществляется за счет увеличения размеров и количества клеток, которые находятся в хрящах эпифизов (крайних участков костей). После того, как закончится половое созревание, хрящевая ткань замещается на костную. Вследствие этого соматотропин не может больше стимулировать рост костей. Поэтому человек растет до определенного возраста.

Чрезмерный синтез гормона роста в детском возрасте приводит к тому, что ребенок вырастает слишком высоким. Но все части тела увеличены пропорционально. Такое состояние называется гигантизмом. Если соматотропин активно вырабатывается у взрослых, возникает непропорциональное разрастание отдельных частей тела — акромегалия.

Если, наоборот, соматотропный гормон роста вырабатывался в недостаточном количестве, развивается карликовость. Ребенок вырастает очень низким, но пропорции тела сохранены.

Биологически активные вещества поджелудочной железы

Поджелудочная железа относится к группе желез смешанной секреции. Это значит, что она помимо синтеза гормонов, также производит ферменты, которые необходимы для переваривания пищи в кишечнике. Синтез гормонов-белков и ферментов — две самые важные функции поджелудочной железы.

Наиболее важные биологически активные вещества, которые вырабатываются в поджелудочной, это инсулин и глюкагон. Они являются антагонистами друг друга, то есть выполняют абсолютно противоположные функции. За счет слаженного действия этих гормонов обеспечивается нормальный углеводный обмен.

Инсулин образуется в островках Лангерганса из проинсулина. Он уменьшает концентрацию глюкозы в крови за счет следующих процессов:

  • повышения ее утилизации в клетках;
  • угнетения глюконеогенеза (синтеза глюкозы в печени);
  • угнетения гликолиза (распада гликогена до глюкозы);
  • стимуляции гликогенеза (образования гликогена из глюкозы).

Также инсулин способствует образованию белков и жиров. То есть он относится к анаболическим гормонам. Глюкагон оказывает абсолютно противоположный эффект, и поэтому его отнесли к катаболическим гормонам.

Заключение

Гормоны-белки и липиды — очень важные вещества в организме. Белки, которые синтезируется в основном в гипоталамусе и гипофизе, оказывают влияние на синтез биологически активных веществ в периферических эндокринных железах. А стероидные и половые гормоны, которые вырабатываются в надпочечниках и гонадах под действием белков, жизненно необходимы для человека.

Выработка биологически активных веществ во всем организме происходит слажено, под четким контролем. А нарушение этих функций может приводить к опасным, а иногда и необратимым последствиям.

источник

Основные функции белка в организме человека

Для чего нужны белки в организме

Каковы основные функции белка в организме человека?

Белки поддерживают мышечную и костную массу, держат в работоспособности иммунную систему, предотвращают утомление.

Со школьной скамьи и даже ранее человечество слышит о белках. О них говорят медики, диетологи, учёные. С их точки зрения белки представляют собой наиболее сложные элементы в пище. В клетках организма они составляют пятую часть всей массы. По закону физики «В ПРИРОДЕ НИЧТО НЕ БЕРЁТСЯ ИЗ НИОТКУДА, и никуда не исчезает, оно превращается из одного вида энергии в другую». Это же можно сказать об образовании и дальнейшем превращении белков.

Белок переводится с греческого, как главный, важнейший, первый. Он так назван, потому что выполняет самые важные, родоначальные, ничем другим незаменимые функции в теле человека.

Из чего состоят белки

Белки состоят из аминокислот. Аминокислота, любая состоит из углерода, водорода, кислорода и азота в своём структурном соединении. Пища состоит из 22 аминокислот. 12 может синтезироваться в организме, и они называются заменимые. 10 аминокислот, остальных, из двадцати двух, незаменимы. Они в теле не производятся, только поступают с продуктами. А вообще аминокислот большое количество в природе.

Белки ещё называют протеинами. Это название предложено в первой половине девятнадцатого века голландским химиком Г. Мульдером, выделив особый класс соединений с азотом.

Виды протеинов с точки зрения основных функций белка в организме человека

Протеины делятся на медленно и быстро усваиваемые, а также включающие оба вида.

Казеин ‒ белок, повышающий и удерживающий концентрацию аминокислот в крови, постепенно, примерно в течение шести, восьми часов.

Яичный белок тоже медленный, поддерживающий уровень аминокислот в крови длительно.

Сывороточный белок делает мощный и быстрый выброс аминокислот. Он действует около часа с предотвращением катаболизма или распада сложных веществ.

Соевый белок может усиливать и дополнять действие сывороточного белка.

Популярные быстрые протеины, усваиваемые от получаса до четырёх: концентрат лактозы, изолят (очищенный) и гидролизат (частично разрушенный ферментами).

Основные функции белка в организме человека

1. Строительная. Из белка состоят клетки, стенки-мембраны, внеклеточная структура. Белок ‒ родоначальник органической Земной жизни.

2. Катализаторная. Белки являются ферментами или энзимами и ускоряют биохимические процессы, которые в организме протекают в «тепличных» условиях, с низкими скоростями. Это температура около сорока градусов и нейтральная кислотность среды. Вот для каждой такой реакции нужны свои ферменты.

3. Транспортная. Биохимический процесс обеспечивается поступлением в клетки строительных материалов, энергии. Как осуществляется это поступление? Их транспортируют белки, потому что для других составляющих мембраны клеток, ограждённые двойным слоем липидов, непроницаемы. А транспортные белки вмонтированы в стенки клеток.

Гемоглобин обеспечивает транспортировку веществ от одних органов к другим.

Транспортный белок, альбумин, образовывает пенициллины, специальные комплексы, с жирными кислотами, аминокислотами, гормонами, с лекарствами.

4. Движущая. Движение тела человека, животных, туфелек и всего живого происходит благодаря специальному сократительному белку.

5. Защитная. При появлении чужеродных тел в организме, иммунная система отвечает выработкой лимфоцитов, уничтожающих эти частицы, плохие они или хорошие. Они состоят из патогенных бактерий, раковых клеток, чужеродных белков, вирусов. Чтобы распознать такой поступающий поток, существуют белки, называемые иммуноглобулинами, антителами. Их рождают бета–лимфоциты в кровеносной системе.

6. Структурная. Кроме высокоспециализированных функций белков, есть белки служащие просто в качестве структуры. Они обеспечивают прочность тканей с механической точки зрения. К ним относится коллаген, эластин. Они работают в коже, стенках кровеносных сосудов, лёгких.

7. Энергетическая. Белки ‒ топливо, самое выгодное. Они источники энергии организма.

Почему всем нужны белки

Потребность в белках совершенно не определяется просто одним возрастом или периодом жизни. Это ещё и наследственность, болезни, темперамент, нагрузки на организм, климат проживания и многого другого.

Наибольшая потребность в белке с рождения. Тело растёт, вес увеличивается быстро. Дети, вскормленные грудным молоком, получают всё необходимое из него. С возрастом наращивание тканей становится медленнее. В зрелом возрасте энергетическая функция белка побеждает строительную.

Почему пожилым людям нужны белки

В здоровом организме, при разнообразном достаточном питании сам организм вырабатывает заменимые аминокислоты, а незаменимые поступают с пищей. Но, именно тот факт, что организм, особенно у людей старшего возраста, никогда не бывает здоровым, а возможность материальная падает, от такого круговорота возможностей человека и выработкой аминокислот, белка, часто в организме не хватает. Это в свою очередь приводит к осложнениям в здоровье. Вот почему белковой пищи не будет много у обычного среднестатического гражданина.

Откуда берутся яды в организме

Но, вот какой парадокс. Известным учёным Бирхер-Беннером проводились исследования, выводом которых стало не уменьшение употребления белка с возрастом, а увеличение! Излишний белок, который не нужен организму, становится для него ядом. Так образуются шлаки. К ним относятся мочевая кислота, мочевина, аммиак, креатинин и так далее. Их избыток задерживается в организме, а выведение затруднено. Они затрудняют все обменные процессы. Происходит старение организма. Не от лет, а от шлаков.

Белки поступают в организм с пищей, распадаются в желудке и кишечнике под действием ферментов на составляющие аминокислоты, всасываются стенками кишечника. Затем происходит их доставка к клеткам организма. Избыток аминокислот разлагается с образованием шлаков, типа мочевины, выделяются с мочой или задерживаются. Всё зависит от здоровья организма.

Как справедлив метод интуитивного питания. При нём не надо напитывать себя белками, например. Просто прислушиваться к своему организму, он сам чего-то захочет или не захочет.

Полноценные и неполноценные белки

Белки, близкие по своему составу к белкам животного организма ‒ полноценные. Белки, в которых отсутствуют важные для жизни аминокислоты, триптофан, тирозин, цистин ‒ неполноценные.

Продукты с животным и соевым белком имеют примерно одинаковый в процентном отношении состав. Он равномерный и равнозначен человеческому. Является такой продукт полноценным.

Простые и сложные белки

Белки, состоящие только из аминокислот простые. Сложными белки будут в случае присоединения к молекуле металла, других групп типа сахара, жиров, витаминов. Например, гликопротеины, липопротеины.

Виды белка и основные его функции в организме человека

По группе присоединения белки имеют название и функциональные особенности.

Белки бывают ферментами и гормонами.

Гормоны, участвующие в регуляции физиологических процессов ‒ белки. Белки коллаген, кератин, являющиеся структурными, компоненты ткани костей, волос, ногтей.

Мышечные сократительные белки могут изменяться в длину при помощи химической энергии, преобразуемой в механическую.

Некоторая часть аминокислот образует гормоны, в переводе с греческого, движущие. Эти вещества выделяются прямо в кровь или лимфу из желёз внутренней секреции (гипофизом, щитовидной, паращитовидной, вилочковой железами, надпочечниками). Так как эндокринные железы не имеют выводных протоков, продукты их деятельности выводятся в кровяное и лимфатическое русло.

А гормон в переводе означает возбуждающий. Он возбуждает или угнетает деятельность организма. Например, рост, метаболизм (способность к усвоению сложных молекул). Повышение активности организма, выделение адреналина стимулируется белком.

Фермент ‒ закваска, ускоряющая химические реакции.

Коллаген занимается регенерацией клеток глаз и сосудов крови. Это основное вещество волокон, хрящей, костей, соединительной ткани.

Регенерация ‒ процесс обратного превращения отработанных продуктов в исходные, то есть восстановление организмом утраченного в теле.

Антитела, связывающие и нейтрализующие токсины тоже белки.

Часть белков реагируют на свет, запах, выполняют в органах функции рецепторов, воспринимают раздражение.

Белки на мембране клеток и внутри их служат регуляторами.

Последствия недостатка белка и отсутствия основных функций белка в организме человека

Меню завтрака должно включать нежирное мясо, йогурт, творог, каши, овощи.

Недостаток белков приводит к отёчности, в связи с задержкой избытка воды в организме. Так как одна из функций белков ‒ водносолевой обмен, осуществление контроля над выведением лишней жидкости.

При жёстких фруктовых, овощных, крупяных диетах, поступает мало белка. Те же белки, что всё-таки поступают в организм всасываются хуже в кровь.

Питание без белков приводит к заболеваниям со смертельным исходом.

Функции белка в организме имеют широкий диапазон от обеспечения протекания химических реакций до содержания в норме его структуры.

Доброго здоровья, достаточного белка в организме и потреблении, как в молодом, таки в старшем возрасте!

источник

Лекция № 3. Строение и функции белков. Ферменты

Строение белков

Белки — высокомолекулярные органические соединения, состоящие из остатков α-аминокислот.

В состав белков входят углерод, водород, азот, кислород, сера. Часть белков образует комплексы с другими молекулами, содержащими фосфор, железо, цинк и медь.

Белки обладают большой молекулярной массой: яичный альбумин — 36 000, гемоглобин — 152 000, миозин — 500 000. Для сравнения: молекулярная масса спирта — 46, уксусной кислоты — 60, бензола — 78.

Аминокислотный состав белков

Белки — непериодические полимеры, мономерами которых являются α-аминокислоты. Обычно в качестве мономеров белков называют 20 видов α-аминокислот, хотя в клетках и тканях их обнаружено свыше 170.

В зависимости от того, могут ли аминокислоты синтезироваться в организме человека и других животных, различают: заменимые аминокислоты — могут синтезироваться; незаменимые аминокислоты — не могут синтезироваться. Незаменимые аминокислоты должны поступать в организм вместе с пищей. Растения синтезируют все виды аминокислот.

В зависимости от аминокислотного состава, белки бывают: полноценными — содержат весь набор аминокислот; неполноценными — какие-то аминокислоты в их составе отсутствуют. Если белки состоят только из аминокислот, их называют простыми. Если белки содержат помимо аминокислот еще и неаминокислотный компонент (простетическую группу), их называют сложными. Простетическая группа может быть представлена металлами (металлопротеины), углеводами (гликопротеины), липидами (липопротеины), нуклеиновыми кислотами (нуклеопротеины).

Все аминокислоты содержат: 1) карбоксильную группу (–СООН), 2) аминогруппу (–NH2), 3) радикал или R-группу (остальная часть молекулы). Строение радикала у разных видов аминокислот — различное. В зависимости от количества аминогрупп и карбоксильных групп, входящих в состав аминокислот, различают: нейтральные аминокислоты, имеющие одну карбоксильную группу и одну аминогруппу; основные аминокислоты, имеющие более одной аминогруппы; кислые аминокислоты, имеющие более одной карбоксильной группы.

Аминокислоты являются амфотерными соединениями, так как в растворе они могут выступать как в роли кислот, так и оснований. В водных растворах аминокислоты существуют в разных ионных формах.

Пептидная связь

Пептиды — органические вещества, состоящие из остатков аминокислот, соединенных пептидной связью.

Образование пептидов происходит в результате реакции конденсации аминокислот. При взаимодействии аминогруппы одной аминокислоты с карбоксильной группой другой между ними возникает ковалентная азот-углеродная связь, которую и называют пептидной. В зависимости от количества аминокислотных остатков, входящих в состав пептида, различают дипептиды, трипептиды, тетрапептиды и т.д. Образование пептидной связи может повторяться многократно. Это приводит к образованию полипептидов. На одном конце пептида находится свободная аминогруппа (его называют N-концом), а на другом — свободная карбоксильная группа (его называют С-концом).

Пространственная организация белковых молекул

Выполнение белками определенных специфических функций зависит от пространственной конфигурации их молекул, кроме того, клетке энергетически невыгодно держать белки в развернутой форме, в виде цепочки, поэтому полипептидные цепи подвергаются укладке, приобретая определенную трехмерную структуру, или конформацию. Выделяют 4 уровня пространственной организации белков.

Первичная структура белка — последовательность расположения аминокислотных остатков в полипептидной цепи, составляющей молекулу белка. Связь между аминокислотами — пептидная.

Если молекула белка состоит всего из 10 аминокислотных остатков, то число теоретически возможных вариантов белковых молекул, отличающихся порядком чередования аминокислот, — 10 20 . Имея 20 аминокислот, можно составить из них еще большее количество разнообразных комбинаций. В организме человека обнаружено порядка десяти тысяч различных белков, которые отличаются как друг от друга, так и от белков других организмов.

Именно первичная структура белковой молекулы определяет свойства молекул белка и ее пространственную конфигурацию. Замена всего лишь одной аминокислоты на другую в полипептидной цепочке приводит к изменению свойств и функций белка. Например, замена в β-субъединице гемоглобина шестой глутаминовой аминокислоты на валин приводит к тому, что молекула гемоглобина в целом не может выполнять свою основную функцию — транспорт кислорода; в таких случаях у человека развивается заболевание — серповидноклеточная анемия.

Вторичная структура — упорядоченное свертывание полипептидной цепи в спираль (имеет вид растянутой пружины). Витки спирали укрепляются водородными связями, возникающими между карбоксильными группами и аминогруппами. Практически все СО- и NН-группы принимают участие в образовании водородных связей. Они слабее пептидных, но, повторяясь многократно, придают данной конфигурации устойчивость и жесткость. На уровне вторичной структуры существуют белки: фиброин (шелк, паутина), кератин (волосы, ногти), коллаген (сухожилия).

Третичная структура — укладка полипептидных цепей в глобулы, возникающая в результате возникновения химических связей (водородных, ионных, дисульфидных) и установления гидрофобных взаимодействий между радикалами аминокислотных остатков. Основную роль в образовании третичной структуры играют гидрофильно-гидрофобные взаимодействия. В водных растворах гидрофобные радикалы стремятся спрятаться от воды, группируясь внутри глобулы, в то время как гидрофильные радикалы в результате гидратации (взаимодействия с диполями воды) стремятся оказаться на поверхности молекулы. У некоторых белков третичная структура стабилизируется дисульфидными ковалентными связями, возникающими между атомами серы двух остатков цистеина. На уровне третичной структуры существуют ферменты, антитела, некоторые гормоны.

Четвертичная структура характерна для сложных белков, молекулы которых образованы двумя и более глобулами. Субъединицы удерживаются в молекуле благодаря ионным, гидрофобным и электростатическим взаимодействиям. Иногда при образовании четвертичной структуры между субъединицами возникают дисульфидные связи. Наиболее изученным белком, имеющим четвертичную структуру, является гемоглобин. Он образован двумя α-субъединицами (141 аминокислотный остаток) и двумя β-субъединицами (146 аминокислотных остатков). С каждой субъединицей связана молекула гема, содержащая железо.

Если по каким-либо причинам пространственная конформация белков отклоняется от нормальной, белок не может выполнять свои функции. Например, причиной «коровьего бешенства» (губкообразной энцефалопатии) является аномальная конформация прионов — поверхностных белков нервных клеток.

Свойства белков

Купить проверочные работы
по биологии

Аминокислотный состав, структура белковой молекулы определяют его свойства. Белки сочетают в себе основные и кислотные свойства, определяемые радикалами аминокислот: чем больше кислых аминокислот в белке, тем ярче выражены его кислотные свойства. Способность отдавать и присоединять Н + определяют буферные свойства белков; один из самых мощных буферов — гемоглобин в эритроцитах, поддерживающий рН крови на постоянном уровне. Есть белки растворимые (фибриноген), есть нерастворимые, выполняющие механические функции (фиброин, кератин, коллаген). Есть белки активные в химическом отношении (ферменты), есть химически неактивные, устойчивые к воздействию различных условий внешней среды и крайне неустойчивые.

Внешние факторы (нагревание, ультрафиолетовое излучение, тяжелые металлы и их соли, изменения рН, радиация, обезвоживание)

могут вызывать нарушение структурной организации молекулы белка. Процесс утраты трехмерной конформации, присущей данной молекуле белка, называют денатурацией. Причиной денатурации является разрыв связей, стабилизирующих определенную структуру белка. Первоначально рвутся наиболее слабые связи, а при ужесточении условий и более сильные. Поэтому сначала утрачивается четвертичная, затем третичная и вторичная структуры. Изменение пространственной конфигурации приводит к изменению свойств белка и, как следствие, делает невозможным выполнение белком свойственных ему биологических функций. Если денатурация не сопровождается разрушением первичной структуры, то она может быть обратимой, в этом случае происходит самовосстановление свойственной белку конформации. Такой денатурации подвергаются, например, рецепторные белки мембраны. Процесс восстановления структуры белка после денатурации называется ренатурацией. Если восстановление пространственной конфигурации белка невозможно, то денатурация называется необратимой.

Функции белков

Функция Примеры и пояснения
Строительная Белки участвуют в образовании клеточных и внеклеточных структур: входят в состав клеточных мембран (липопротеины, гликопротеины), волос (кератин), сухожилий (коллаген) и т.д.
Транспортная Белок крови гемоглобин присоединяет кислород и транспортирует его от легких ко всем тканям и органам, а от них в легкие переносит углекислый газ; в состав клеточных мембран входят особые белки, которые обеспечивают активный и строго избирательный перенос некоторых веществ и ионов из клетки во внешнюю среду и обратно.
Регуляторная Гормоны белковой природы принимают участие в регуляции процессов обмена веществ. Например, гормон инсулин регулирует уровень глюкозы в крови, способствует синтезу гликогена, увеличивает образование жиров из углеводов.
Защитная В ответ на проникновение в организм чужеродных белков или микроорганизмов (антигенов) образуются особые белки — антитела, способные связывать и обезвреживать их. Фибрин, образующийся из фибриногена, способствует остановке кровотечений.
Двигательная Сократительные белки актин и миозин обеспечивают сокращение мышц у многоклеточных животных.
Сигнальная В поверхностную мембрану клетки встроены молекулы белков, способных изменять свою третичную структуру в ответ на действие факторов внешней среды, таким образом осуществляя прием сигналов из внешней среды и передачу команд в клетку.
Запасающая В организме животных белки, как правило, не запасаются, исключение: альбумин яиц, казеин молока. Но благодаря белкам в организме могут откладываться про запас некоторые вещества, например, при распаде гемоглобина железо не выводится из организма, а сохраняется, образуя комплекс с белком ферритином.
Энергетическая При распаде 1 г белка до конечных продуктов выделяется 17,6 кДж. Сначала белки распадаются до аминокислот, а затем до конечных продуктов — воды, углекислого газа и аммиака. Однако в качестве источника энергии белки используются только тогда, когда другие источники (углеводы и жиры) израсходованы.
Каталитическая Одна из важнейших функций белков. Обеспечивается белками — ферментами, которые ускоряют биохимические реакции, происходящие в клетках. Например, рибулезобифосфаткарбоксилаза катализирует фиксацию СО2 при фотосинтезе.

Ферменты

Ферменты, или энзимы, — особый класс белков, являющихся биологическими катализаторами. Благодаря ферментам биохимические реакции протекают с огромной скоростью. Скорость ферментативных реакций в десятки тысяч раз (а иногда и в миллионы) выше скорости реакций, идущих с участием неорганических катализаторов. Вещество, на которое оказывает свое действие фермент, называют субстратом.

Ферменты — глобулярные белки, по особенностям строения ферменты можно разделить на две группы: простые и сложные. Простые ферменты являются простыми белками, т.е. состоят только из аминокислот. Сложные ферменты являются сложными белками, т.е. в их состав помимо белковой части входит группа небелковой природы — кофактор. У некоторых ферментов в качестве кофакторов выступают витамины. В молекуле фермента выделяют особую часть, называемую активным центром. Активный центр — небольшой участок фермента (от трех до двенадцати аминокислотных остатков), где и происходит связывание субстрата или субстратов с образованием фермент-субстратного комплекса. По завершении реакции фермент-субстратный комплекс распадается на фермент и продукт (продукты) реакции. Некоторые ферменты имеют (кроме активного) аллостерические центры — участки, к которым присоединяются регуляторы скорости работы фермента (аллостерические ферменты).

Для реакций ферментативного катализа характерны: 1) высокая эффективность, 2) строгая избирательность и направленность действия, 3) субстратная специфичность, 4) тонкая и точная регуляция. Субстратную и реакционную специфичность реакций ферментативного катализа объясняют гипотезы Э. Фишера (1890 г.) и Д. Кошланда (1959 г.).

Э. Фишер (гипотеза «ключ-замок») предположил, что пространственные конфигурации активного центра фермента и субстрата должны точно соответствовать друг другу. Субстрат сравнивается с «ключом», фермент — с «замком».

Д. Кошланд (гипотеза «рука-перчатка») предположил, что пространственное соответствие структуры субстрата и активного центра фермента создается лишь в момент их взаимодействия друг с другом. Эту гипотезу еще называют гипотезой индуцированного соответствия.

Скорость ферментативных реакций зависит от: 1) температуры, 2) концентрации фермента, 3) концентрации субстрата, 4) рН. Следует подчеркнуть, что поскольку ферменты являются белками, то их активность наиболее высока при физиологически нормальных условиях.

Большинство ферментов может работать только при температуре от 0 до 40 °С. В этих пределах скорость реакции повышается примерно в 2 раза при повышении температуры на каждые 10 °С. При температуре выше 40 °С белок подвергается денатурации и активность фермента падает. При температуре, близкой к точке замерзания, ферменты инактивируются.

При увеличении количества субстрата скорость ферментативной реакции растет до тех пор, пока количество молекул субстрата не станет равным количеству молекул фермента. При дальнейшем увеличении количества субстрата скорость увеличиваться не будет, так как происходит насыщение активных центров фермента. Увеличение концентрации фермента приводит к усилению каталитической активности, так как в единицу времени преобразованиям подвергается большее количество молекул субстрата.

Для каждого фермента существует оптимальное значение рН, при котором он проявляет максимальную активность (пепсин — 2,0, амилаза слюны — 6,8, липаза поджелудочной железы — 9,0). При более высоких или низких значениях рН активность фермента снижается. При резких сдвигах рН фермент денатурирует.

Скорость работы аллостерических ферментов регулируется веществами, присоединяющимися к аллостерическим центрам. Если эти вещества ускоряют реакцию, они называются активаторами, если тормозят — ингибиторами.

Классификация ферментов

По типу катализируемых химических превращений ферменты разделены на 6 классов:

  1. оксиредуктазы (перенос атомов водорода, кислорода или электронов от одного вещества к другому — дегидрогеназа),
  2. трансферазы (перенос метильной, ацильной, фосфатной или аминогруппы от одного вещества к другому — трансаминаза),
  3. гидролазы (реакции гидролиза, при которых из субстрата образуются два продукта — амилаза, липаза),
  4. лиазы (негидролитическое присоединение к субстрату или отщепление от него группы атомов, при этом могут разрываться связи С–С, С–N, С–О, С–S — декарбоксилаза),
  5. изомеразы (внутримолекулярная перестройка — изомераза),
  6. лигазы (соединение двух молекул в результате образования связей С–С, С–N, С–О, С–S — синтетаза).

Классы в свою очередь подразделены на подклассы и подподклассы. В действующей международной классификации каждый фермент имеет определенный шифр, состоящий из четырех чисел, разделенных точками. Первое число — класс, второе — подкласс, третье — подподкласс, четвертое — порядковый номер фермента в данном подподклассе, например, шифр аргиназы — 3.5.3.1.

Перейти к лекции №2 «Строение и функции углеводов и липидов»

Перейти к лекции №4 «Строение и функции нуклеиновых кислот АТФ»

Смотреть оглавление (лекции №1-25)

источник