Белково пептидные гормоны образуются

БЕЛКОВО-ПЕПТИДНЫЕ ГОРМОНЫ

БЕЛКОВО-ПЕПТИДНЫЕ ГОРМОНЫ — обширная группа гормонов, вырабатываемых различными эндокринными железами, по структуре являющихся белками или пептидами. Наибольшее количество белково-пептидных гормонов секретируется гипофизом: окситоцин, вазопрессин, альфа- и бета-меланоцитостимулирующие гормоны, адренокортикотропный гормон (АКТГ), липотропный гормон, гормон роста, лактогенный, лютеинизирующий, фолликулостимулирующий и тиреотропный гормоны. Поджелудочная железа вырабатывает да гормона — инсулин и глюкагон, околощитовидная железа — паратгормон и щитовидная железа — тиреокальцитонин. Большая группа пептидных гормонов секретируется гипоталамусом; их называют рилизинг-гормонами гипоталамуса, так как они стимулируют выделение гормонов передней доли гипофиза (от английского realease — выделяю).

По химическому строению белково-пептидные гормоны крайне разнообразны. Большая часть белково-пептидных гормонов является простыми пептидами, молекула которых состоит из одной пептидной цепи, содержащей различное количество аминокислотных остатков,— от 3 в тиреотропин-рилизинг-гормоне гипоталамуса до 198 в лактогенном гормоне. Окситоцин и вазопрессин содержат в своих молекулах по 9, а меланоцитостимулирующий гормон — 13, бета-меланоцитостимулирую щий гормон — 18, глюкагон — 29, тиреокальцитонин — 32,АКТГ — 39, паратгормон — 84, бета-липотропный гормон — 91 и гормон роста — 191 аминокислотный остаток, алфа- и бета-Меланоцитостимулирующие гормоны, глюкагон, АКТГ, паратгормон и бета-липотропный гормон не содержат дисульфидных связей. Окситоцин, вазопрессин и тиреокальцитонин содержат одну, гормон роста — две и лактогенный гормон — три дисульфидные связи. Химическое строение инсулина отличается от структуры всех других гормонов. Молекула инсулина состоит из двух пептидных цепей (А, состоящей из 21, и В — из 30 аминокислотных остатков), связанных друг с другом двумя дисульфидными мостиками. Особую группу белково-пептидных гормонов составляют гормоны гипофиза: лютеинизирующий, фолликулостимулирующий и тиреотропный, являющиеся сложными белками — гликопротеидами. Активная молекула этих веществ образуется путем соединения двух неактивных субъединиц (фльфа и бета) с помощью нековалентных связей.

По биологическому действию белково-пептидные гормоны крайне разнообразны. Рилизинг-гормоны гипоталамуса стимулируют секрецию соответствующих тройных гормонов гипофизом. Окситоцин и вазопрессин регулируют транспорт воды в организме и стимулируют сокращение гладкой мускулатуры матки и кровеносных сосудов, альфа- и бета-Меланоцитостимулирующие гормоны повышают образование кожных пигментов. Глюкагон и инсулин регулируют углеводный обмен, тиреокальцитонин и паратгормон — фосфорно-кальциевый обмен, липотропный гормон — жировой обмен, гормон роста — обмен белков, жиров и углеводов и стимулирует общий рост организма, лактогенный гормон увеличивает образование молока в молочных железах. Другие белково-пептидные гормоны гипофиза (АКТГ, лютеинизирующий, фолликулостимулирующий и тиреотропный) активируют функцию соответствующих эндокринных желез, коры надпочечников, гонад и щитовидной железы.

Помимо гипофиза и других желез, белково-пептидные гормоны вырабатываются также плацентой, которая секретирует в кровь соматомаммотропин, сходный по химической структуре и биологическим свойствам с гипофизарным гормоном роста, и хорионический гонадотропин, сходный с лютеинизирующим горбоном. К белково-пептидным гормонам относят также секретин — пептид, состоящий из 26 аминокислотных остатков. Он вырабатывается слизистой оболочкой тонкой кишки и через кровь стимулирует секрецию панкреатического сока. К белково-пептидным гормонам относят иногда ангиотензин, обладающий гипертензивным действием и стимулирующий секрецию надпочечником альдостерона, а также брадикинин и каллидин, стимулирующие сокращение гладкой мускулатуры. Эти вещества являются окта-, нона- и декапептидами и образуются из специфических белков плазмы под влиянием протеолитических ферментов.

Клиническое применение. Многие белково-пептидные гормоны получают синтетическим путем и применяют в клинике для лечения заболеваний желез внутренней секреции, при нарушениях обмена веществ и других заболеваниях.

источник

Параграф 99 1. белково-пептидные гормоны

Автор текста – Анисимова Елена Сергеевна. Авторские права защищены. Продавать текст нельзя.
Курсив НЕ НУЖНО зубрить.

Замечания можно прислать по почте: exam_bch@mail.ru
https://vk.com/bch_5

См. п.91, 56-59, 83, 6. И файл «91 ТАБЛИЦА»

ПАРАГРАФ 99 1:
«Белково-пептидные гормоны.»

99. 1. Белково-пептидные гормоны (БПГ): общие свойства.
99. 2. Классификация белково-пептидных гормонов.
99. 3. Органы, клетки и биологические жидкости, в которых образуются БПГ.

Белково-пептидными называют гормоны,
которые химически являются пептидами или белками (п.56, 57).

99. 1. Белково-пептидные гормоны: общие свойства.

1. Все они представляют собой последовательности аминокислотных остатков
(аминоацилов), соединённых между собой пептидными связями (п.56).
Из-за этого белково-пептидные гормоны при попадании в ЖКТ
расщепляются пищеварительными ферментами (пептидазами) на аминокислоты,
как и белки пищи (п.61).
Поэтому при лечении гормонами белково-пептидной природы делают инъекции,
а не в виде таблеток или сиропов принимают внутрь препараты гормонов.

2. Все белково-пептидные гормоны образуются
из полипептидных цепей-предшественников,
при расщеплении определённых связей этих цепей,
то есть путём ОГРАНИЧЕННОГО ПРОТЕОЛИЗА предшественника (п.83).

Полипептидная цепь-предшественник синтезируется, как и все белки,
из аминокислот в ходе процесса, который называется трансляцией и осуществляется рибосомами (п.82).
Для трансляции нужна мРНК, кодирующая данную ППЦ.
мРНК образуется в результате транскрипции и процессинга – п.80 и 81.

Пример ППЦ-предшественника белково-пептидных гормонов –
1) предшественник КОРТИКОтропина (АКТГ, п. 100),
2) МЕЛАНОцит-стимулирующих гормонов (МСГ) и
3) ОПИАТОВ,
4) липопротопина,
который называется ПроОпиоМеланоКортином (ПОМК).

Синтез ПОМК в гипофизе
стимулируется кортиколиберином и снижается ГКС (п.108).
Поэтому при избытке ГКС синтез ПОМК снижен,
что приводит к снижению синтеза опиатов,
что может быть причиной неуравновешенности (до психоза),
абдоминальных болей
и общего физического дискомфорта при избытке ГКС.

Нарушения ограниченного протеолиза ППЦ-предшественников
могут привести к дефициту белково-пептидных гормонов.
Другой пример – ограниченный протеолиз предшественника инсулина в п.102.

3. Все белково-пептидные гормоны КОДИРУЮТСЯ ГЕНАМИ.

Точнее, генами кодируются ППЦ-предшественники
белково-пептидных гормонов.
Мутации в этих генах могут привести
к нарушению работы белково-пептидных гормонов
(например, к дефициту гормонов).
Например, мутации в генах, которые кодируют СТГ или ИФР,
приводят к карликовости – п.100.
Лечится это инъекциями СТГ И ИФР,
получаемых для медицины методами генной инженерии.

4. Клетки, синтезирующие белково-пептидные гормоны.

Белково-пептидные гормоны синтезируются
многими клетками организма, не только эндокринными железами. – см. п. 99.3.
Один и тот же гормон может синтезироваться в разных клетках.
Например, соматостатин синтезируется
гипоталамусом
и поджелудочной железой (дельта-клетками ПЖЖ).
Соматостатин гипоталамуса снижает синтез соматотропина,
а соматостатин ПЖЖ снижает синтез инсулина и глюкагона.
Другой пример – холецистокинин и опиаты, которые синтезируются:
и в ЖКТ, и в головном мозге.

5. Белково-пептидные гормоны гидрофильны (п.92),

поэтому не способны проходить через мембраны,
поэтому рецепторы белково-пептидных гормонов расположены на поверхности цитоплазматических мембран клеток – п.92.
В передаче сигнала от белково-пептидного гормона внутрь клетки
могут участвовать мембранные G-белки, протеинкиназы, тирозинкиназы, вторые посредники – п.94-98.

6. Способ промышленного производства белково-пептидных гормонов

для лечения ими – генная инженерия (технология рекомбинантных ДНК).
Этим способом получают:
1) инсулин для диабетиков (п.103),
2) соматотропин для карликов (п.100),
3) лептин для людей с ожирением (п.99.2 и 44.3),
4) эритропоэтин для людей с некоторыми формами анемии (п.121),
5) гонадотропины для лечения бесплодия (некоторых форм)
и многие другие гормоны,
без которых вылечить ряд больных было бы невозможно другими известными методами — п.88 и 124.

99. 2. Классификация белково-пептидных гормонов. См. п. 91.

1. Классификация по химической природе.

Белково-пептидные гормоны делятся на БЕЛКИ И ПЕПТИДЫ.
Они отличаются тем, что
в состав пептидов входят от 2 до 100 аминоацилов,
а в состав белков входят от 100 аминоацилов.
Но это формально; например, инсулин, состоящий из 51 аминоацила, тоже является настоящим белком.

Белки делят на ПРОСТЫЕ И СЛОЖНЫЕ.
Простые белки состоят только из аминоацилов,
а в состав сложных белков входят другие, небелковые вещества,
образующие комплексы с ППЦ.
Обычно в состав белковых гормонов входят углеводные компоненты.
Такие сложные белки (в состав которых входят углеводы) называются ГЛИКОПРОТЕИНАМИ.
О структуре гликопротеинов – п.38 и 39.
Углеводный компонент представлен олигосахаридом
(соединением из нескольких моносахаридных остатков, соединённых гликозидными связями),
участвует в специфическом распознавании.
Примеры гликопротеиновых гормонов – тиреотропин, гонадотропины.

2. Классификация по клеткам, которые синтезируют белково-пептидные гормоны (См. файл «91 ТАБЛИЦА» и далее 99.3):

1) гормоны головного мозга (нейропептиды, в том числе опиоиды и т.д.),
2) гипоталамуса (либерины, окситоцин, АДГ = вазопрессин),
3) гипофиза (тропины, тропные гормоны),
4) щитовидной железы (кальцитонин, не йодтиронины –они не белковые),
5) поджелудочной железы (инсулин, глюкагон, соматостатин),
6) жировых клеток (лептин),
7) ФРК, синтезируемые разными клетками,
8) клетки почек (эритропоэтин),
9) клетки печени (соматомедины, ИФР)
и т.д. – см. п. 91.

3. Классификация по виду регуляции.

Как и другие гормоны (п.91), белково-пептидные гормоны
1) бывают ДИСТАНТНЫМИ гормонами (инсулин, ТТГ, опиоиды),
2) бывают НЕЙРОГОРМОНАМИ (медиаторами и модуляторами; примеры – либерины, опиоиды),
3) бывают гормонами МЕСТНОГО действия (инсулин),

БПГ могут участвовать в регуляции:

1) ЭНДОкринной (при которой гормон доставляется к клетке-мишени с током крови),
2) НЕЙРОкринной (при которой гормон диффундирует в синаптической щепи),
3) ПАРАкринной (при которой гормон диффундирует в ткани) и
4) АУТОкринной (при которой гормон действует на ту же клетку, которая его секретировала).

4. Можно выделить группы гормонов, которые действуют:

1) через РЕЦЕПТОРЫ разных типов,
2) через разные ВТОРЫЕ ПОСРЕДНИКИ,
3) вызывают ЭФФЕКТЫ разных типов – п.92.

Например, группа гормонов, действующих через тирозинкиназные рецепторы
(рецепторы, которые регулируют активность тирозинкиназ)
и поэтому относящиеся к онкобелкам. Примеры – СТС, инсулин – п.98.

Гормоны, влияющие на концентрацию ионов кальция в клетке (в гиалоплазме),
называются кальций-зависимыми (п.97): ангиотензин, либерины и т.д.

Гормоны, действующие через изменение концентрации цАМФ в клетке. И т.д.

5. Можно классифицировать белково-пептидные гормоны
ПО ВЛИЯНИЮ НА ОРГАНИЗМ.

Например, есть гормоны, снижающие артериальное давление –
это ГИПОТЕНЗИВНЫЕ гормоны, примеры – НУП и адреномедуллин (п.113).

Есть гормоны, которые повышают артериальное давление – это ГИПЕРТЕНЗИВНЫЕ гормоны. Пример – ангиотензин, АДГ (п.112. 113).

Есть гормоны, которые стимулируют синтезы в организме, деление клеток, рост, заживление, увеличение мышечной массы –
их называют АНАБОЛИЧЕСКИМИ гормонами или анаболиками (это сленг).

Есть анаболические стероиды, но среди белково-пептидных гормонов
анаболическими являются инсулин, соматотропин, ИФР – п.85.
Инсулин и СТГ стимулируют синтез белка,
но синтез жира стимулирует только инсулин,
а СТГ стимулирует распад жира.

99. 3. Органы, клетки и биологические жидкости,
в которых образуются белково-пептидные гормоны. См. файл «91 ТАБЛИЦА»

1. В КРОВИ образуются пептидные гормоны АНГИОТЕНЗИН и БРАДИКИНИН
из предшественников ангиотензиногена (п.112) и кининогена (п.62). Предшественники образуются не в крови,
они синтезируются клетками ПЕЧЕНИ (П.117).
Ангиотензин и брадикинин регулируют артериальное давление и много другое.

2. Многие клетки синтезируют факторы роста клеток (ФРК).

3. Лейкоциты синтезируют ЦИТОКИНЫ.

4. Клетки белой жировой ткани (адипоциты) синтезируют «гормон стройности» ЛЕПТИН.
(голова)
5. Клетки головного мозга синтезируют НЕЙРОПЕПТИДЫ, в том числе ЭНДОРФИНЫ и другие опиаты,
влияющие на психику, ВНД, мышление, чувства и т.д. – см. 99.2 и 99.3.

6. Гипоталамус синтезирует ЛИБЕРИНЫ и СТАТИНЫ,
регулирующие работу гипофиза и мозга – п. 100.

7. Гипофиз синтезирует ТРОПИНЫ, регулирующие работу многих эндокринных желёз – п.100.
(шея)
8. Щитовидная железа синтезирует КАЛЬЦИТОНИН (её йодтиронины – не белковые гормоны) – п. 114.

9. Паращитовидные железы синтезируют ПАРАТИРИН – п. 114.
Гормоны «шейных» желёз
кальцитонин и паратирин регулируют концентрацию кальция в крови:
кальцитонин – снижает (гипо/кальции/емический гормон),
а паратирин – повышает (гипер/кальции/емический гормон) – п.114.

10. Тимус синтезирует ТИМОЗИНЫ и другие гормоны, влияющие на иммунную систему.

11. Сердце и сосуды синтезируют гормоны
НУП (натрийуретический пептид) и АДРЕНОМЕДУЛЛИН,
которые снижают артериальное давление
и защищают от сердечно-сосудистых заболеваний – п.113.

(ЖКТ)
12. Желудок синтезирует ГАСТРИН, повышающий кислотность и т.д. (п.61)

13. Поджелудочная железа синтезирует ИНСУЛИН, ГЛЮКАГОН (не глИкогЕн), СОМАТОСТАТИН. – п.100, 102, 37.
Гормоны ПЖЖ регулируют концентрацию глюкозы в крови (гликемию) – п.37, 102, 103.
Инсулин снижает гликемию (гипогликемический гормон),
а глюкагон повышает гликемию (гипергликемический гормон), спасая от обморока и комы.

14. Некоторые клетки ЖКТ синтезируют гормоны:

— СЕКРЕТИН
(обеспечивает нейтрализацию кислого содержимого, поступающего из желудка,
за счёт стимуляции секреции бикарбонатного сока из ПЖЖ),

— ХОЛЕЦИСТОКИНИН
(обеспечивает расщепление полимеров пищи за счёт стимуляции поступления в ДПК сока с ферментами – пептидазами, липазой и т.д.),

— ОПИАТЫ (предотвращают диарею и т.д.)

Не белково-пептидные гормоны синтезируют только щитовидная железа, надпочечники и половые железы.

источник

Биосинтез гормонов. Биосинтез белково-пептидных гормонов

Формирование первичной структуры прогормонов или гормонов белково-пептидной природы изначально — результат прямой трансляции нуклеотидных последовательностей соответствующих мРНК, синтезируемых на активных участках генома гормонпродуцирующих клеток. Структура большинства белковых гормонов или их предшественников формируется в полисомах по общей схеме биосинтеза белка (рис. 26).

При этом возможность синтеза и трансляции мРНК данного гормона или его предшественников специфична для ядерного аппарата и полисом определенного типа клеток. Так, инсулин и его предшественники продуцируются в особых в-клетках островков Лангерганса поджелудочной железы, глюкагон — в их а-клетках, СТГ — в малых эозинофилах аденогипофиза, пролактин — в больших эозинофильных клетках той же железы, а гонадотропины — в особых базофильных клетках и т.д.

Исключением из общего правила путей биогенеза гормональных полипептидов является биосинтез таких рилизинг-факторов в клетках гипоталамуса, как ТРФ и ЛГ-РФ. Синтез этих небольших пептидов может происходить не в полисомах на матрице мРНК, а в растворимой части цитоплазмы под влиянием специальных для каждого фактора РФ-синтетазных систем, состоящих из комплекса специфических ферментов (Райклин и др. 1972, 1973; Йоханссон и др., 1973).

Прямая трансляция генетического материала в случаях синтеза большинства полипептидных гормонов чаще всего приводит к образованию не самого гормона, а его малоактивных предшественников — полипептидных препрогормонов (прегормоны).

В такого рода случаях биосинтез полипептидного гормона складывается из двух этапов: 1) рибосомального синтеза неактивного предшественника на матрице РНК и 2) посттрансляционного образования активного гормона. Первый этап протекает обязательно в клетках эндокринной железы, второй — осуществляется, как правило, в эндокринной железе, но может происходить и вне ее.

Посттрансляционная активация гормональных предшественников (процессинг-белков) может реализоваться в двух формах: путем многоступенчатой ферментативной деградации молекул транслируемых крупномолекулярных предшественников с уменьшением размеров молекулы (или молекул) активируемого гормона (или гормонов) и за счет неферментативной ассоциации прогормональных субъединиц с укрупнением размеров молекулы активируемого гормона. Эти пути образования характерны не только для гормональных, но и для других секретируемых белков (Нейрат, 1977).

Первая форма посттрансляционной активации протекает чаще всего как многоступенчатый процесс, реализуемый при участии специфических протеаз ограниченного действия. В результате трансляции под прямым генетическим контролем образуется в таких случаях крупномолекулярный, короткоживущий предшественник препрогормон. Он обычно гидрофобен с N-конца и легко проникает через мембраны эндоплазматического ретикулума, с которым ассоциированы синтезирующие его ансамбли полисом.

При прохождении через мембраны ретикулума происходит ферментативное отщепление от прегормона гидрофобного участка с N-конца его молекулы, и в цистернах ретикулума образуются молекулы укороченного и более гидрофильного прогормона. Прогормон перемещается из жидкой части цитоплазмы (цитозоля) в секреторные гранулы или секретируется в кровь в виде так называемых «больших» гормонов. В крови обнаруживают, в частности, «большой» инсулин, «большой» СТГ, «большой» паратгормон и т.д. (Ялоу, 1978. 1979).

В гранулах эндокринной клетки или вне ее прогормон деградирует, активируется и превращается в истинный гормон. Однако активный гормон может в свою очередь быть прогормоном для других гормональных соединений и превращаться в них под действием протеаз периферических тканей. Схема процесса в общем виде выглядит так:

Протеазы ограниченного действия осуществляют опосредованный генетический контроль биосинтеза гормонов данного типа.

Вторая форма посттрансляционной активации осуществляется обычно внутри эндокринных клеток и характерна для димерных гликопротеиновых гормонов. Схема этих процессов следующая:

Присоединение углеводных остатков к субъединицам является ферментативным процессом. Кроме того, каждая субъединица может ферментативно отщепляться от просубъединицы.

Первая форма активации предшественников пептидных гормонов хорошо изучена для биосинтеза инсулина, паратгормона, ангиотензина, в-липотропина, АКТГ и ряда других белково-пептидных гормонов. Рассмотрим эти процессы на примере биогенеза инсулина в в-клетках островкового аппарата поджелудочной железы (Штейнер и др., 1969, 1976). На первом этапе синтеза данного гормона в полисомах клеток синтезируется короткоживущий одноцепочечный пептид, состоящий из 104-110 аминокислотных остатков, с М.м.—11500.

Этот короткоживущий белок, не обладающий биологической активнос/ью, был назван препроинсулином или преинсулином. В нем с/ N-конца цепи есть сигнальный гидрофобный 23-членный пептид, соединенный с в-цепью будущего инсулина (30 остатков), с С-конца расположена А-цспь инсулина (21 остаток), а между В- и А-цепями находится вставочный пептид (30-35 остатков у разных видов) (рис. 27). Сигнальный и вставочный пептиды вариабельны у разных видов животных. В цистернах шероховатого ретикулума на пути из полисом в секреторные гранулы препроинсулин сначала подвергается протеолизу с N-конца, в результате чего отщепляется сигнальный 23-членный пептид, «протаскивающий» прегормон через мембрану.

В результате препроинсулин превращается в проинсулин — одноцепочечный полипептид, который состоит из 81-86 аминокислотных остатков (М.м — 9500) и обладает низкой биологической активностью. В секреторных гранулах происходит превращение проинсулина в инсулин путем ферментативного выщепления вставочного пептида. Данный процесс протекает двухстадийно при участии двух групп ферментов: специфической трипсиноподобной эндопептидазы (превращающего фермента), вызывающей расщепление участков Apr-Apr и Лиз-Apr; карбоксипептидазоподобных ферментов (карбоксипептидаз В), отщепляющих 3 Apr и 1 Лиз.

В результате действия этих ферментов образуется активная двухцепочечная форма инсулина (51 аминокислотный остаток, М.м — 5700), молекула связывающего или С-пептида (26-31 остаток у разных видов) , 3 молекулы аргинина и 1 молекула лизина. Сущность механизма активации в данном случае сводится к выщеплению из молекулы проинсулина вставочного пептида, что обеспечивает необходимую для проявления высокой биологической активности взаимную пространственную ориентацию цепей А и В, связанных двумя дисульфидными мостиками.

Описанный принцип активации белково-пептидных гормонов в процессе их биосинтеза, по-видимому, универсален, но может варьироваться в деталях деградации молекул предшественников и в особенностях тканевой локализации стадий процесса. Так, одноцепочечный пептид — паратгормон — образуется в клетках околощитовидных желез в результате последовательной деградации его крупномолекулярных предшественников с N-конца их молекулы (Кемпер и др., 1974, 1976). В полисомах сначала синтезируется препропаратгормон, состоящий из 115 аминокислотных остатков. После отщепления от N-концевой части прегормона 25-членного гидрофобного фрагмента образуется паратгормон (90 остатков аминокислот). Из прогормона в секреторных гранулах клеток железы образуется паратгормон после отщепления 6-членного фрагмента от N-конца прогормональной молекулы.

Из преатриопептида (151 аминокислотный остаток) в миокарде образуется сначала проатриопептид в результате отщепления с N-конца 25-членного сигнального фрагмента. Из последнего затем выщепляются АНФ (124-151 остаток в прегормоне) и кардиодиллатин (26-92 остатка в преформе).

источник

Механизм регуляции эндокринных желез через гипоталамус-гипофиз

Когда концентрация периферического гормона в крови снижается, тогда из гипоталамуса выделяются либерины, которые действуют на гипофиз и стимулируют освобождение тропинов. Тропины действуют на периферические железы и усиливают освобождение из них гормонов, концентрация которых возрастает. Это фиксируется рецепторами гипоталамуса. Он прекращает освобождение либеринов, но усиливает выброс статинов, которые тормозят гипофиз.

Белково — пептидные гормоны

Либерины, статины, андидиуретический гормон, окситоцин – гормоны гипоталамуса.

Тропины (соматотропин, тиреотропин, кортикотропин, фоликулостимулирующий, лютеонизирующий, пролактин) – гормоны гипофиза.

Тиреокальцитонин – гормон щитовидной железы.

Паратгормон — гормон паращитовидной железы.

Инсулин – гормон В-клеток поджелудочной железы.

Глюкагон – гормон А-клеток поджелудочной железы.

Гастрин, секретин, холецистокинин, энтерогастрон – гормоны ЖКТ.

Факторы роста клеток, нервов, сосудов.

Ангиотензин-II, кинины – гормоны крови.

Соматотропный гормон (СТГ, гормон роста)

СТГ – простой белок (молекулярная масса 21000). Обладает высокой видовой специфичностью.

СТГ выполняет следующие функции:

Стимулирует синтез белка на уровне транскрипции и трансляции;

Активирует триглицеридлипазу, окисление жирных кислот;

Стимулирует освобождение глюкагона, что приводит к гипергликемии.

Выработку СТГ усиливает соматолиберин, снижает – соматостатин.

Действие СТГ на клетки осуществляется через цАМФ и ростстимулирующие факторы (соматомедины).

Патология, вызванная нарушением образования СТГ.

Акромегалия возникает при избыточном образовании СТГ у взрослого человека. Признаки: чрезмерный рост костей рук, ног и лица, мягких тканей носа, губ, подбородка, волос на теле.

Акромегалия обычно обусловлена наличием опухоли аденогипофиза или снижением выработки статинов.

Гигантизм развивается при гиперсекреции СТГ у людей до завершения окостенения. Происходит общий чрезмерный рост скелета.

Гипофизарная карликовость (нанизм) наблюдается при гипосекреции СТГ в детском возрасте. Карлики обычно не имеют признаков деформации скелета, не страдают умственным недоразвитием. Рост взрослого человека 110-130 сантиметров.

Глюкагон

Глюкагон относится к белково-пептидным гормонам. Образуется в А-клетках поджелудочной железы. Состоит из 29 аминокислот, имеет молекулярную массу 3485. Образуется из проглюкагона путем отщепления 8 аминокислот. Секреция глюкагона усиливается при повышении содержания в крови Са 2+ , аргинина; тормозится глюкозой и соматостатином. Рецепторы для глюкагона находятся на мембране клеток. Он действует путем увеличения концентрации цАМФ в клетке. Мишенями глюкагона являются печень, жировая ткань и, в меньшей степени, мышцы.

Усиливает распад гликогена в печени и мышцах.

Усиливает липолиз, что приводит к повышению жирных кислот и глицерина в крови.

Усиливает окисление жирных кислот в печени, образование ацетил-КоА и образование из него кетоновых тел.

Увеличивает катаболизм белков и использование образовавшихся аминокислот в глюконеогенезе.

источник

Белково-пептидные гормоны

В эту группу входят все тропные гормоны, либерины и статины, инсулин, глюкагон, кальцитонин, гастрин, секретин, холецистокинин, ангиотензин II, антидиурети­ческий гормон (вазопрессин), паратиреоидный гормон и др.

Эти гормоны образуются из белковых предшественников, называемых прогормонами. Как правило, сначала синтезируется препрогормон, из которого образуется прогормон, а затем гормон.

Синтез прогормонов осуществляется на мембранах гранулярной эндоплазматической сети (шероховатый ретикулум) эндокринной клетки. Большое значение для этих процессов имеет способность препрогормонов проникать через мембрану эндоплаз­матической сети в ее внутренние полости за счет того, что первые 20—25 аминокислотных остатков с N-конца у многих белковых предшественников являются одинаковыми, а на наружной мембране эндоплазматической сети имеются структуры, «узнающие» эту по­следовательность. В результате становится возможным внедрение молекулы препрогормона в липидный бислой мембраны и постепен­ное проникновение белкового предшественника во внутреннее про­странство эндоплазматической сети.

Везикулы с образующимся прогормоном переносятся затем в пластинчатый комплекс (комплекс Гольджи), где под действием мембранной протеиназы от молекулы прогормона отщепляется определенная часть аминокислотной цепи. В результате образуется гормон, который поступает в везикулы, содержащиеся в комплексе Гольджи. В дальнейшем эти везикулы сливаются с плазматической мембраной и высвобождаются во внеклеточное пространство.

Концентрация белково-пептидных гормонов в крови обычно со­ставляет 10-9—10-10 М. При стимуляции эндокринной железы кон­центрация соответствующего гормона возрастает в 2—5 раз.

Период полураспада белково-пептидных гормонов в крови со­ставляет 10—20 мин. Они разрушаются протеиназами клеток-мишеней, крови, печени и почек.

Стероидные гормоны.

В эту группу входят тестостерон, эстрадиол, эстрон, прогестерон, кортизол, альдостерон и др. Эти гормоны образуются из холестерина в корковом веществе надпочечников (кортикостероиды), а также в семенниках и яичниках (половые стероиды). В малом количестве половые стероиды могут образовываться в корковом веществе надпочечников, а кортикостероиды — в половых железах. Свободный холестерин поступает в митохондрии, где превращается в прегненолон, который затем попадает в эндоплазматическую сеть и после этого — в цитоплазму.

В корковом веществе надпочечников синтез стероидных гормонов стимулируется кортикотропином, а в половых железах — лютеинизирующим гормоном (ЛГ). Эти гормоны ускоряют транспорт эфиров холестерина в эндокринные клетки и активируют митохондриальные ферменты, участвующие в образовании прегненолона. Кроме того, тропные гормоны активируют процессы окисления сахаров и жирных кислот в эндокринных клетках, что обеспечивает стероидогенез энергией и пластическим материалом.

Кортикостероидыподразделяют на две группы. Глюкокортикоиды (типичный представитель — кортизол) индуцируют синтез ферментов глюконеогенеза в печени, препятствуют поглощению глюкозы мышцами и жировыми клетками, а также способ­ствуют высвобождению из мышц молочной кислоты и аминокислот, тем самым ускоряя глюконеогенез в печени.

Минералокортикоиды (типичный представитель — альдостерон) задерживают натрий в крови. Снижение концентрации натрия в выделяемой моче, а также секретах слюнных и потовых желез приводит к меньшим потерям воды, так как вода движется через биологические мембраны в направлении высокой концентрации солей.

Стимуляция синтеза глюкокортикоидов осуществляется через систему гипоталамус—гипофиз—надпочечники. Стресс (эмоциональное возбуждение, боль, холод и т. п.), тироксин, адре­налин и инсулин стимулируют секрецию кортиколиберина из ак­сонов гипоталамуса. Этот гормон связывается с мембранными ре­цепторами аденогипофиза и вызывает секрецию кортикотропина, который с током крови попадает в надпочечники и стимулирует там образование глюкокортикоидов — гормонов, повышающих ус­тойчивость организма к неблагоприятным воздействиям.

Кортикотропин влияет слабо на синтез минералокортикоидов. Имеется дополнительный механизм регуляции синтеза минералокортикоидов, осуществляющийся через так называемую ренин-ангиотензиновую систему. Рецепторы, реагирующие на давление кро­ви, локализованы в артериолах почек. При снижении давления крови эти рецепторы стимулируют секрецию ренина почками. Ренин является специфической эндопептидной, отщепляющей от α2-глобулина крови С-концевой декапептид, который называют «ангиотензин I». От ангиотензина I карбоксипептидаза (ангиотензинпревращающий фермент, расположенный на наружной поверхности эндо­телия кровеносных сосудов) отщепляет два аминокислотных остатка и образует октапептид ангиотензин II — гормон, к которому на мембране клеток коркового вещества надпочечников имеются специальные рецепторы. Связываясь с этими рецепторами, ангиотензин II стимулирует образование альдостерона, который действует на дистальные канальцы почек, потовые железы, слизистую обо­лочку кишечника и увеличивает в них реабсорбцию ионов Na+, Сl- и НСОз-. В результате в крови повышается концентрация ионов Na+ и снижается концентрация ионов Сl- и К+. Эти эффекты альдостерона полностью блокируются ингибиторами синтеза белка.

Половые стероиды. Андрогены (мужские половые гормоны) продуцируются интерстициальными клетками (гландулоцитами) се­менников и в меньшем количестве яичниками и корковым веществом надпочечников. Основным андрогеном является тестостерон. Этот гормон может претерпевать изменения в клетке-мишени — превращаться в дигидротестостерон, который обладает большей активностью, чем тестостерон. Следует отметить, что ЛГ, который стимулирует начальные этапы биосинтеза стероидов в эндокринной железе, активирует также превращение тестостерона в дигидротестостерон в клетке-мишени, тем самым, усиливая андрогенные эффекты.

Эстрогены (женские половые гормоны) в организме человека в основном представлены эстрадиолом. В клетках-мишенях они не метаболизируются.

Действие андрогенов и эстрогенов направлено в основном на органы воспроизведения, проявление вторичных половых признаков, поведенческие реакции. Андрогенам свойственны также анаболиче­ские эффекты — усиление синтеза белка в мышцах, печени, почках. Эстрогены оказывают катаболическое влияние на скелетные мышцы, но стимулируют синтез белка в сердце и печени. Таким образом, основные эффекты половых гормонов опосредуются процессами ин­дукции и репрессии синтеза белка.

Стероидные гормоны легко проникают через клеточную мемб­рану, поэтому их секреция происходит параллельно с синтезом. Содержание стероидов в крови определяется соотношением скоростей их синтеза и распада. Регуляция этого содержания осуществляется главным образом путем изменения скорости синтеза. Тропные гор­моны (кортикотропин, ЛГ и ангиотензин) стимулируют этот синтез. Устранение тропного влияния приводит к торможению синтеза сте­роидных гормонов.

Действующие концентрации стероидных гормонов составляют 10-11—10-9 М. Период их полураспада равен 1/2—11/2 ч.

Тиреоидные гормоны.

В эту группу входят тироксин и трийодтиронин. Синтез этих гормонов осуществляется в щитовидной железе, в которой ионы йода окисляются при участии пероксидазы до йодиниум-иона, способного йодировать тиреоглобулин — тетрамерный белок, содержащий около 120 тирозинов. Йодирование тирозиновых остатков происходит при участии пероксида водорода и завершается образованием монойодтирозинов и дийодтирозинов. После этого происходит «сшивка» двух йодированных тирозинов. Эта окислительная реакция протекает с участием пероксидазы и завер­шается образованием в составе тиреоглобулина трийодтиронина и тироксина. Для того чтобы эти гормоны освободились из связи с белком, должен произойти протеолиз тиреоглобулина. При расщеплении одной молекулы этого белка образуется 2—5 молекул тирок­сина (Т4) и трийодтиронина (Тз), которые секретируются в молярных соотношениях, равных 4:1.

Синтез и секреция тиреоидных гормонов находятся под контролем гипоталамо-гипофизарной системы. Тиреотропин активирует аденилатциклазу щитовидной железы, ускоряет активный транспорт йода, а также стимулирует рост эпителиальных клеток щитовидной же­лезы. Эти клетки формируют фолликул, в полости которого про­исходит йодирование тирозина.

Выделение Тз и Т4 осуществляется с помощью пиноцитоза. Ча­стички коллоида окружаются мембраной эпителиальной клетки и поступают в цитоплазму в виде пиноцитозных пузырьков. При слиянии этих пузырьков с лизосомами эпителиальной клетки происходит расщепление тиреоглобулина, который составляет основную массу коллоида, что приводит к выделению Т3 и Т4. Тиреотропин и другие факторы, повышающие концентрацию цАМФ в щитовидной железе, стимулируют пиноцитоз коллоида, процесс образования и движения секреторных пузырьков. Таким образом, тиреотропин ус­коряет не только биосинтез, но и секрецию Т3 и Т4. При повышении уровня Т3 и Т4 в крови подавляется секреция тиреолиберина и тиреотропина.

Тиреоидные гормоны могут циркулировать в крови в неизмен­ном виде в течение нескольких дней. Такая устойчивость гормонов объясняется, по-видимому, образованием прочной связи с Т4-свя-зывающими глобулинами и преальбуминами в плазме крови. Эти белки имеют в 10—100 раз большее сродство к Т4, чем к T3, поэтому в крови человека содержится 300—500 мкг Т4 и лишь 6—12 мкг Т3.

Катехоламины. В эту группу входят адреналин, норадреналин и дофамин. Источником катехоламинов, как и тиреоидных гормонов, служит тирозин, однако при синтезе катехоламинов метаболизму подвергается свободная аминокислота. Синтез катехоламинов про­исходит в аксонах нервных клеток, запасание — в синаптических пузырьках. Катехоламины, образующиеся в мозговом веществе над­почечников, выделяются в кровь, а не в синаптическую щель, т. е. являются типичными гормонами.

В некоторых клетках синтез катехоламинов заканчивается образованием дофамина, а адреналин и норадреналин образуются в меньшем количестве. Такие клетки есть в составе гипоталамуса. Предполагают, что пролактостатином, т. е. гормоном гипоталамуса, подавляющим секрецию пролактина, является дофамин. Известны и другие структуры мозга (например, стриарная система), которые находятся под влиянием дофамина и нечувствительны, например, к адреналину.

В симпатических нервных волокнах дофамин не накапливается, а быстро превращается в норадреналин, который хранится в синаптических пузырьках. Адреналина в этих волокнах значительно меньше, чем норадреналина. В мозговом слое надпочечников биосинтез завершается образованием адреналина, поэтому норадреналина образуется в 4—6 раз меньше, а дофамина сохраняются лишь следы.

Синтез катехоламинов в мозговом веществе надпочечников стмулируется нервными импульсами, поступающими по чревному сим­патическому нерву. Выделяющийся в синапсах ацетилхолин взаимодействует с холинергическими рецепторами никотинового типа и возбуждает нейросекреторную клетку надпочечника. Благодаря су­ществованию нервно-рефлекторных связей надпочечники отвечают усилением синтеза и выделения катехоламинов в ответ на болевые и эмоциональные раздражители, гипоксию, мышечную нагрузку, охлаждение и т. д. Существуют и гуморальные пути регуляции активности клеток мозгового вещества надпочечников: синтез и выделение катехоламинов могут возрастать под действием инсулина, глюкокортикоидов, при гипогликемии.

Катехоламины подавляют как собственный синтез, так и выде­ление. В адренергических синапсах на пресинаптической мембране есть α-адренергические рецепторы. При выбросе катехоламинов в синапс эти рецепторы активируются и начинают оказывать ингибирующее влияние на секрецию катехоламинов. Аутоингибирование секреции обнаружено практически во всех тканях, секретирующих эти гормоны или нейромедиаторы.

В отличие от холинергических синапсов, постсинаптическая мем­брана которых содержит как рецепторы, так и ацетилхолинэстеразу, разрушающую медиатор, удаление катехоламинов из синапса про­исходит в результате обратного захвата медиатора нервными окон­чаниями. Поступающие в нервное окончание из синапса катехол­амины вновь концентрируются в специальных гранулах и могут повторно участвовать в синаптической передаче.

Определенное количество катехоламинов может диффундировать из синапсов в межклеточное пространство, а затем в кровь, поэтому содержание норадреналина в крови больше, чем адреналина, не­смотря на то что мозговое вещество надпочечников секретирует в кровь адреналин, а норадреналин секретируется преимущественно в синапсах. При стрессе содержание катехоламинов повышается в 4—8 раз. Период полураспада катехоламинов в крови равен 1—3 мин.

Катехоламины могут инактивироваться в тканях-мишенях, печени и почках. Решающее значение в этом процессе играют два фермента — моноаминоксидаза, расположенная на внутренней мем­бране митохондрий, и катехол-О-метилтрансфераза, цитозольный фермент.

Эйкозаноиды. В эту группу входят простагландины, тромбоксаны и лейкотриены. Эйкозаноиды называют гормоноподобными вещест­вами, так как они могут оказывать только местное действие, со­храняясь в крови в течение нескольких секунд. Образуются во всех органах и тканях практически всеми типами клеток.

Биосинтез большинства эйкозаноидов начинается с отщепления арахидоновой кислоты от мембранного фосфолипида или диацил-глицерина в плазматической мембране. Синтетазный комплекс представляет собой полиферментную систему, функционирующую преимущественно на мембранах эндоплазматической сети. Обра­зующиеся эйкозаноиды легко проникают через плазматическую мембрану клетки, а затем через межклеточное пространство пе­реносятся на соседние клетки или выходят в кровь и лимфу. Скорость синтеза эйкозаноидов увеличивается под влиянием гор­монов и нейромедиаторов, активирующих аденилатциклазу или повышающих концентрацию ионов Са2+ в клетке. Наиболее ин­тенсивно образование простагландинов происходит в семенниках и яичниках.

Простагландины могут активировать аденилатциклазу, тромбок­саны увеличивают активность фосфоинозитидного обмена, а лей­котриены повышают проницаемость мембран для ионов Са2+. По­скольку цАМФ и ионы Са2+ стимулируют синтез эйкозаноидов, замыкается положительная обратная связь в синтезе этих специфических регуляторов.

Во многих тканях кортизол тормозит освобождение арахидоновой кислоты, что приводит к подавлению образования эйкозаноидов, и тем самым оказывает противовоспалительное действие. Простагландин E1 является мощным пирогеном. Подавлением синтеза этого простагландина объясняют терапевтическое действие аспирина.

Период полураспада эйкозаноидов составляет 1—20 с. Ферменты, инактивирующие их, имеются практически во всех тканях, но на­ибольшее их количество содержится в легких.

Дата добавления: 2015-11-05 ; просмотров: 1711 | Нарушение авторских прав

источник