Биохимическая природа гормонов белки

11 Биохимия гормонов, в.250599

Организм человека существует как единое целое благодаря системе внутренних связей, которая обеспечивает передачу информации от одной клетки к другой в одной и той же ткани или между разными тканями. Без этой системы невозможно поддерживать гомеостаз. В передаче информации между клетками в многоклеточных живых организмах, принимают участие три системы: ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА (ЦНС), ЭНДОКРИННАЯ СИСТЕМА (ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ) и ИММУННАЯ СИСТЕМА.

Способы передачи информации во всех названных системах — химические. Посредниками при передаче информации могут быть СИГНАЛЬНЫЕ молекулы.

К таким сигнальным молекулам относятся четыре группы веществ: ЭНДОГЕННЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА (медиаторы иммунного ответа, факторы роста и др.), НЕЙРОМЕДИАТОРЫ, АНТИТЕЛА (иммуноглобулины) и ГОРМОНЫ.

Б И О Х И М И Я Г О Р М О Н О В

ГОРМОНЫ — это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

1) выделяются из вырабатывающих их клеток во внеклеточное пространство;

2) не являются структурными компонентами клеток и не используются как источник энергии.

3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона.

4) обладают очень высокой биологической активностью — эффективно действуют на клетки в очень низких концентрациях (около 10 -6 — 10 -11 моль/л).

МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ.

Гормоны оказывают влияние на клетки-мишени.

КЛЕТКИ-МИШЕНИ — это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

— преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания — эндокринные нарушения. Есть три типа таких заболеваний:

1. Связанные с недостаточностью синтеза белков-рецепторов.

2. Связанные с изменением структуры рецептора — генетических дефекты.

3. Связанные с блокированием белков-рецепторов антителами.

источник

11 Биохимия гормонов, в.250599

Организм человека существует как единое целое благодаря системе внутренних связей, которая обеспечивает передачу информации от одной клетки к другой в одной и той же ткани или между разными тканями. Без этой системы невозможно поддерживать гомеостаз. В передаче информации между клетками в многоклеточных живых организмах, принимают участие три системы: ЦЕНТРАЛЬНАЯ НЕРВНАЯ СИСТЕМА (ЦНС), ЭНДОКРИННАЯ СИСТЕМА (ЖЕЛЕЗЫ ВНУТРЕННЕЙ СЕКРЕЦИИ) и ИММУННАЯ СИСТЕМА.

Способы передачи информации во всех названных системах — химические. Посредниками при передаче информации могут быть СИГНАЛЬНЫЕ молекулы.

К таким сигнальным молекулам относятся четыре группы веществ: ЭНДОГЕННЫЕ БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА (медиаторы иммунного ответа, факторы роста и др.), НЕЙРОМЕДИАТОРЫ, АНТИТЕЛА (иммуноглобулины) и ГОРМОНЫ.

Б И О Х И М И Я Г О Р М О Н О В

ГОРМОНЫ — это биологически активные вещества, которые синтезируются в малых количествах в специализированнных клетках эндокринной системы и через циркулирующие жидкости (например, кровь) доставляются к клеткам-мишеням, где оказывают свое регулирующее действие.

Гормоны, как и другие сигнальные молекулы, обладают некоторыми общими свойствами.

1) выделяются из вырабатывающих их клеток во внеклеточное пространство;

2) не являются структурными компонентами клеток и не используются как источник энергии.

3) способны специфически взаимодействовать с клетками, имеющими рецепторы для данного гормона.

4) обладают очень высокой биологической активностью — эффективно действуют на клетки в очень низких концентрациях (около 10 -6 — 10 -11 моль/л).

МЕХАНИЗМЫ ДЕЙСТВИЯ ГОРМОНОВ.

Гормоны оказывают влияние на клетки-мишени.

КЛЕТКИ-МИШЕНИ — это клетки, которые специфически взаимодействуют с гормонами с помощью специальных белков-рецепторов. Эти белки-рецепторы располагаются на наружной мембране клетки, или в цитоплазме, или на ядерной мембране и на других органеллах клетки.

БИОХИМИЧЕСКИЕ МЕХАНИЗМЫ ПЕРЕДАЧИ СИГНАЛА ОТ ГОРМОНА В КЛЕТКУ-МИШЕНЬ.

Любой белок-рецептор состоит, минимум из двух доменов (участков), которые обеспечивают выполнение двух функций:

— преобразование и передачу полученного сигнала в клетку.

Каким образом белок-рецептор узнает ту молекулу гормона, с которой он может взаимодействовать?

Один из доменов белка-рецептора имеет в своем составе участок, комплементарный какой-то части сигнальной молекулы. Процесс связывания рецептора с сигнальной молекулой похож на процесс образования фермент-субстратного комплекса и может определяется величиной константы сродства.

Большинство рецепторов изучены недостаточно, потому что их выделение и очистка очень сложные, а содержание каждого вида рецепторов в клетках очень низкое. Но известно, что гормоны взаимодействуют со своими рецепторами физико-химическим путем. Между молекулой гормона и рецептором формируются электростатические и гидрофобные взаимодействия. При связывании рецептора с гормоном происходят конформационные изменения белка-рецептора и комплекс сигнальной молекулы с белком-рецептором активируется. В активном состоянии он может вызывать специфические внутриклеточные реакции в ответ на принятый сигнал. Если нарушен синтез или способность белков-рецепторов связываться с сигнальными молекулами, возникают заболевания — эндокринные нарушения. Есть три типа таких заболеваний:

1. Связанные с недостаточностью синтеза белков-рецепторов.

2. Связанные с изменением структуры рецептора — генетических дефекты.

3. Связанные с блокированием белков-рецепторов антителами.

источник

Гипоталамус -аденогипофиз

В гипоталамусе мелкие клетки синтезируют высвобождающие гормо-

ны (либерины) или ингибирующие гормоны (статины). Либерины и стати-

ны поступают в кровеносные сосуды и с кровью достигают аденогипофиза.

Если на клетки аденогипофиза действуют либерины, то клетки выделяют

гормон, а если статины, то продукция гормонов тормозится. Всего обна-

ружено 6 либеринов и 3 статина: соматолиберин, кортиколиберин, тирео-

либерин, люлиберин, пролактолиберин, меланолиберин, соматостатин,

пролактостатин, меланостатин. Стимулом для синтеза либеринов или ста-

тинов являются нервные импульсы или вещества, приносимые кровью

в гипоталамус. В гипоталамусе отсутствует гематоэнцефалический барьер

и имеются рецепторы к гормонам.

Гормоны аденогипофиза

1. Соматотропный гормон (стг) — гормон роста. По химической

природе является полипептидом, видоспецифичен, действие опосреду-

ется через вещество плазмы — соматомедин. Мишени для СТГ — это

клетки хрящевой ткани (стимулирует рост костей в длину) и все клетки

организма (увеличивает их проницаемость для глюкозы, аминокислот).

В жировой ткани стимулирует липолиз. СТГ принимает участие в за-

живлении ран, регенерации клеток. Концентрация СТГ увеличивается

в крови в ночное время, когда в организме усиливаются процессы ана-

болизма. Выработка СТГ усиливается под действием либеринов, а на

выработку соматолиберина влияют лимбическая система, уровень глю-

козы и аминокислот в крови. Соматостатин тормозит выработку СТГ.

2. Адренокортикотропный гормон (АКТГ) — кортикотропин. По

химической природе полипептид. Клетки-мишени — пучковая зона

коры надпочечников (выброс в кровь глюкокортикоидов), жировые

клетки (стимулируют липолиз). Выделение контролируется кортиколи-

беринами, которые выделяются при гипоксии мозга, болевых воздейст-

виях, физической нагрузке, охлаждении, гиповолемии, гипогликемии,

3. Пролактин — лактотропный гормон (ПРЛ), полипептид. Мише-

нями в мужском организме являются семенники. Под действием ПРЛ

повышается их чувствительность к половым гормонам. В женском ор-

ганизме мишенями являются клетки молочной железы. Гормон стиму-

лирует образование молока у кормящей матери, участвует в формиро-

вании материнского чувства. Стимулом для выработки гормона являет-

ся изменение уровня половых гормонов в крови, раздражение

механорецепторов соска молочной железы.

4. Фолликулостимулирующий гормон (ФСГ). В мужском организме

мишенями являются семенники, в которых усиливается сперматогенез,

в женском организме — яичники. Гормон стимулирует рост фоллику-

лов и образование эстрогенов.

5. Лютеинизирующий гормон (ЛГ). Мишени в мужском организ-

ме — семенники, гормон контролирует выработку андрогенов, в жен-

ском — яичники, гормон способствует овуляции, образованию желтого

тела. Регуляция уровня гормона в крови осуществляется в зависимости

от изменения уровня половых гормонов.

6. Тиреотропный гормон (ТТГ) — гликопротеид. Клетки-мишени —

это фолликулярный аппарат щитовидной железы. Продукция определя-

ется тиреолиберином, который вырабатывается при снижении уровня

тироидных гормонов в крови, при длительном действии холода на ор-

7. Меланоцитстимулирующий гормон (МСГ). Клетками-мишенями

источник

Гуморальная регуляция. Классификация гуморальных агентов и эндокринных желёз. Биохимическая природа гормонов.

При изучении эпителиальных тканей организма в классификации, наряду с покровным эпителием, выделялся железистый эпителий, в который входили железы внешней секреции (экзокринные) и железы внутренней секреции (эндокринные). Указывалось, что эндокринные железы не имеют выводных протоков и выделяют свой секрет (который называется гормон) в кровь или лимфу. По строению железы внутренней секреции делятся на два типа: фолликулярные, — когда эндокриноциты формируют фолликулы, и трабекулярные, — представленные тяжами эндокринных клеток.

Гормоны — это вещества с высокой биологической активностью — регулируют рост и деятельность клеток различных тканей организма.

Для гормонов характерна специфичность действия на конкретные клетки и органы, называемые мишенями. Это обусловлено наличием на клетках-мишенях специфических рецепторов, распознающих и связывающих данный гормон. Будучи связан рецептором, гормон может воздействовать на плазматическую мембрану, на фермент, находящийся в этой мембране, на клеточные органеллы в цитоплазме или же на ядерный (генетический) материал.

Химическая природа гормонов различна. Подавляющее большинство гормонов принадлежит к белкам и производным аминокислот, часть — к стероидам (т.е. производным холестерина).

Эндокринная регуляция является одним из нескольких видов регуляторных воздействий, среди которых выделяют:

аутокринную регуляцию (в пределах одной клетки или клеток одного типа);

паракринную регуляцию (короткодистантную, — на соседние клетки);

эндокринную (опосредованную гормонами, циркулирующими в крови);

Наряду с термином «эндокринная регуляция», часто используют термин «нейро-гуморальная регуляция», подчеркивая тесную взаимосвязь нервной и эндокринной систем.

Общим для нервных и эндокринных клеток является выработка гуморальных регулирующих факторов. Эндокринные клетки синтезируют гормоны и выделяют их в кровь, а нейроны синтезируют нейромедиаторы (большинство из которых является нейроаминами): норадреналин, серотинин и другие, выделяющиеся в синаптические щели. В гипоталамусе находятся секреторные нейроны, совмещающие свойства нервных и эндокринных клеток. Они обладают способностью образовывать как нейроамины, так и олигопептидные гормоны. Выработка гормонов эндокринными органами регулируется нервной системой.

Классификация эндокринных структур

I. Центральные регуляторные образования эндокринной системы:

гипоталамус (нейросекреторные ядра);

гипофиз (аденогипофиз и нейрогипофиз);

II. Периферические эндокринные железы:

надпочечники (корковое и мозговое вещество).

III. Органы, объединяющие эндокринные и неэндокринные функции:

гонады (половые железы — семенники и яичники);

IV. Одиночные гормонпродуцирующие клетки, апудоциты.

Как в любой системе, центральные и периферические ее звенья имеют прямые и обратные связи. Гормоны, вырабатываемые в периферических эндокринных образованиях, могут оказывать регулирующее влияние на деятельность центральных звеньев.

Одной из особенностей строения эндокринных органов является обилие в них сосудов, особенно гемокапилляров синусоидного типа и лимфокапилляров, в которые поступают секретируемые гормоны.

источник

ХИМИЧЕСКАЯ ПРИРОДА ГОРМОНОВ И ДРУГИХ БАВ

Все гормоны с точки зрения их химической структуры делятся на 3 класса — белковые, стероидные (липндные) и производные аминокислот.

Группа белковых гормонов представлена, во-первых, гормонами-протеидами (сложными белками). Это глкжопротеиды. К этой группе относятся тиреотропный гормон (ТГГ), фолли-кулостимулирующий гормон (ФСГ), лютешшзирующий гормон (ЛГ). Вторая группа — это пептидные гормоны, состоящие из 30—90 аминокислотных остатков. К этой группе относят­ся адренокортикотропный гормон (АКТГ), соматотропный гормон (СТГ), меланоцитстиму-лирующий гормон (МСГ), пролактин, паратгормон, инсулин, глюкагон. Например, АКТГ содержит 39 аминокислотных остатков, СТГ— 191, пролактин— 198. Третья группа белко­вых гормонов — это группа олигопептидов (малых пептидов), она представлена гормонами, состоящими из небольшого числа аминокислотных остатков: это либерины, статины, гормо­ны желудочно-кишечного тракта. Например, соматостатин содержит 14 аминокислот, гона-долиберин — 10 аминокислот, окситоцин содержит 9 аминокислотных остатков.

Важно отметить, что белковые гормоны, во-первых, являются гидрофильными и потому они не способны проходить пассивно через фосфолипидные барьеры (плазматические мем­браны), во-вторых, их гидрофильность позволяет самостоятельно транспортироваться с кровью, так как они растворимы в крови.

Стероидные, или липндные, гормоны представляют собой производные холестерина (хо­лестерин переходит в прегненолон, из которого происходят все основные стероидные гор­моны) — кортикостерон, кортизол, альдостерон, прогестины, эстрадиол, эстриол, эстрон, тестостерон, стеролы витамина Д. Кроме того, к этой группе гормонов относятся арахидо-новая кислота и ее производные — простагландины, простациклины, тромбоксаны, лейко-триены. Для всех этих гормонов характерна гидрофобность. Поэтому они хорошо прохо­дят из мест своего синтеза через клеточную мембрану и попадают беспрепятственно в дру­гие среды (кровь, межклеточное пространство). В крови они требуют специальных носите­лей, так как гидрофобный

Группа гормонов — производных аминокислот, представлена такими гормонами, как адреналин, норадреналин, дофамин, тироидные гормоны (трийодтиронин, тироксин) — все они являются производными аминокислоты тирозин. Серотонин — производное триптофа­на, гистамин — производное гистидина. Только тиреоидные гормоны способны проходить

через клеточные барьеры, все остальные производные аминокислот не могут проходить через плазматическую мембрану внутрь клетки.

В целом, знание химической природы гормона позволяет в определенной степени по­нять отдельные этапы сложного процесса, который возникает при воздействии гормона на орган-мишень.

СИНТЕЗ И ТРАНСПОРТ ГОРМОНОВ

1.Белковые гормоны (белково-пептидные гормоны) образуются путем процессинга бел­
ковых предшественников (прогормонов) или даже нрепрогормонов. Как правило, синтез
осуществляется в рибосомах шероховатого ретикулюма эндокринной клетки. Принцип син­
теза таков — во внутреннем пространстве ретикулюма на рибосомах синтезируется пре-
прогормон. Затем от него отщепляется 20—25 аминокислотных остатков и в таком виде
образовавшийся прогормон отшнуровывается от ретикулюма в виде везикул или гранул и
попадает в аппарат Гольджи. В этом аппарате содержимое гранул (везикул) высвобождает­
ся, происходит отщепление от прогормона лишних аминокислотных фрагментов и таким
образом образуется гормон. Этот синтезированный гормон окружается мембранами и вы­
носится в виде везикулы к плазматической мембране. По мере транспорта везикулы в ней
происходит дозревание гормона, например, ацетилирование его конца. После слияния ве­
зикулы с плазматической мембраной происходит разрыв везикулы и излитие гормона в ок­
ружающую среду — происходит явление экзоцитоза.

Вот пример синтеза инсулина: в результате рибосомального синтеза на мембранах ше­роховатого ретикулюма образуется пропроинсулин — 109 аминокислотных остатков; здесь же, в ретикулюме, от него отщепляется гидрофобный фрагмент, состоящий из 23 аминокис­лотных остатков, и остается проинсулин. Везикула с проинсулином переносится в аппарат Гольджи, где мембранная протеиназа выщепляет из молекулы проинсулина (1-86) фраг­мент 31-65. В результате образуется инсулин — две цепи А и В, соединенные между собой двумя S-S мостиками. Здесь же в аппарате Гольджи заготовленная заранее везикула захва­тывает инсулин, а также ионы цинка. После присоединения везикулы к плазматической мембране ее содержимое — инсулин — выбрасывается в межклеточное пространство. Син­тез молекулы происходит за 1 —2 минуты, транспорт проинсулина от ретикулюма до аппа­рата Гольджи занимает 10—20 минут, а «созревание» везикул, несущих инсулин от аппара­та Гольджи до плазматических мембран, происходит за 1—2 часа.

В целом от начала синтеза белковых гормонов до момента их появления в местах секре­ции проходит 1—3 часа. Самое «улкое» место — это процесс секреции — процесс от эндо-плазматического ретикулюма до плазматической мембраны. Поэтому в основном регуля­ция уровня гормонов в крови осуществляется на этапах секреции, а не на этапах синтеза.

Некоторые гормоны образуются из общего предшественника, например, АКТГ, МСГ, липотропины, эндорфины, энкефалины образуются из общего предшественника — пропио-омеланокортина. Поэтому индукция или репрессия синтеза этого предшественника сказы­вается одновременно на каждом из перечисленных гормонов.

Белковые гормоны в силу их гидрофильности хорошо растворимы в крови и поэтому не требуют специальных переносчиков. Их разрушение в крови и тканях осуществляется с участием специфических протеиназ, содержащихся в клетках-мишенях, а также протеиназ крови, печени, почек. Например, окситоцин разрушается окситоциназой. Полупериод жиз­ни их в крови составляет 10—20 минут и меньше.

2. Синтез стероидных гормонов.Он осуществляется в клетках, начиная с подготовки
холестерина, основного источника всех стероидов. В клетках-продуцентах стероидов име­
ется холестерин, который частично поступает из плазмы. Обычно холестерин связан с жир­
ными кислотами. Поэтому первый этап синтеза — это отщепление жирных кислот, оно
происходит под влиянием фермента холестеринэстеразы. Свободный холестерин поступа­
ет в митохондрии и здесь он превращается в прегненолон. В его образовании принимают

участие цитохром Р45О, десмолаза и другие ферменты. Затем, образованный прегненолон поступает из митохондрий в эндоплазматический ретикулюм и микросомы. Здесь вначале образуется прогестерон, из которого с помощью различных ферментов образуются все сте­роидные гормоны. Один путь — это превращение прогестерона в кортикостерон и альдос-терон. Второй путь — превращение прогестерона в кортизол, из которого образуются анд-рогены (тестостерон), которые в свою очередь превращаются в эстрогены. Суть всех пре­вращений, начиная от процесса преобразования холестерина в прегненолон в митохондри­ях и последующих реакций в микросомах, заключается в гидроксилировании молекул сте­роидов. Эти процессы осуществляются специальными ферментами — гидроксилазами и оксидазами. Набор этих ферментов и определяет те стероидные гормоны, которые синтези­руются в конкретной эндокринной клетке (глкжокортикоиды, минералокортикоиды, поло­вые гормоны, прогестины). Интенсивность синтеза стероидных гормонов контролируется АКТГ и ЛГ, которые за счет изменения уровня цАМФ и (как следствие этого) повышения активности протеинкиназ активируют ферменты, участвующие в стероидогенезе, усиливая скорость образования соответствующих гормонов.

Период полужизни в крови для стероидов примерно равен 0,5—1,5 часа. Транспорт осу­ществляется транскортином (для кортикостероидов), тестостерон-эстроген-связывающим глобулином.

3. Синтез катехоламинов. Он осуществляется за счет последовательного превращения аминокислоты тирозина в ДОФА (диоксифенилаланин), дофамин, норадреналин, адрена­лин. Превращение тирозина в ДОФА происходит в цитоплазме хромаффинной клетки под влиянием фермента тироэингидроксилазы. Это наиболее медленная стадия в биосинтезе катехоламинов. Инсулин, глюкокортикоиды, ацетилхолин повышают активность этого фер­мента и ускоряют процесс образования катехоламинов. Образовавшийся ДОФА в цитоплазме превращается в дофамин. Дофамин проникает в специально образованные гранулы (вези­кулы), в которых при наличии фермента дофамин-бета-оксидазы и кофакторов превращает­ся в норадреналин. Из этих везикул норадреналин может выбрасываться в синаптическую щель (если речь идет о синапсе) или в цитоплазму. В цитоплазме с помощью фермента метилазы образуется адреналин, который поступает в специальные гранулы (везикулы) и с помощью этих гранул секретируется клеткой во внеклеточное пространство. Считается, что полу период жизни катехоламинов в крови человека I—3 минуты. Катехоламины в кро­ви связываются белками и лишь 5—10% их находится в свободном состоянии. Благодаря этому белки выполняют функцию буфера, поддерживая на постоянном уровне концентра­цию гормона в крови.

РЕЦЕПТОРЫ ГОРМОНОВ

Гормональные рецепторы — а число идентифицированных рецепторов в настоящее вре­мя достигло 60, в 50% случаев локализуются на мембранах клетки-мишени, а в остальных случаях — внутри клетки. Гормоны, которые не способны проникать через плазматичес­кую мембрану, должны иметь рецепторы на поверхности клетки. Плазматические рецепто­ры имеют белковые гормоны — ТТГ, ФСГ, ЛГ, хорионический гормон, СТГ, пролактин, хорионический соматотропин (плацентарный лактоген), инсулин, инсулиноподобный фак­тор роста I и Н, соматомедин, релаксин, гастрин, холецистокинин, глюкагон, ВИП, АКТГ, альфа-МСГ, энкефалины, эндорфины, бета-липотропин, окситошш, вазопрессин (АДГ), эпидермальный фактор роста, паратирин (паратгормон), кальцитонин, тиролиберин, гонадо-либерин, соматостатин, соматолиберин. На поверхности клетки имеются рецепторы для вос­приятия катехоламинов (альфа- и бета-адренорецепторы), простагландинов (пока идентифи­цировано лишь 6 видов рецепторов), серотонина, нейротензина, вещества Р, гистамина.

Внутриклеточные рецепторы служат для восприятия стероидных гормонов — глюко-кортикоидов, минералокортикоидов, эстрогенов, андрогенов, прогестинов, а также тирео-идных гормонов — тироксина и трийодтиронина.

Ко многим гормонам рецепторы еще не выявлены.

Все гормональные рецепторы представляют собой специфические структуры клетки, связывание с которыми — обязательное условие для проявления эффектов гормонов. Ре­цепторы обладают высоким средством и избирательностью к гормонам, но в то же время они могут связывать структурные аналоги гормонов. Поэтому в литературе принято такое понятие: вещества, имитирующие действие гормона — это агонисты, или миметики, а ве­щества, которые связываются с рецепторами, но при этом не вызывают биологического эффекта или препятствуют связыванию гормона — антагонисты, или литики.

В одной и той же клетке и даже на одной и той же мембране клетки могут располагаться десятки разных типов рецепторов. Рецепторы представляют собой белковые структуры. Их синтез происходит в эндоплазматическом ретикулюме (в рибосомах). После образования они проходят «дозревание» в аппарате Гольджи, откуда транслоцируются в плазматичес­кие мембраны или в цитозоль. Количество рецепторов одного и того же типа, например, адренорецепторов, на поверхности клетки варьирует. Существуют несколько видов регуля­ции концентрации рецепторов. Один из них — это регуляция за счет изменения синтеза рецепторов. Например, при беременности у женщин в миометрии существенно меняется концентрация окситоциновых, серотониновых рецепторов, холино- и адренорецепторов. Так, согласно нашим данным, при беременности миометрии женщин лишается М-холино-рецепторов, но в то же время в нем возрастает концентрация окситоциновых, серотонино­вых и гистаминовых рецепторов, повышается концентрация бета-адренорецепторов и сни­жается уровень альфа-адренорецепторов. Все эти изменения, вероятнее всего, происходят под влиянием эстрогенов и прогестерона.

Концентрация рецепторов на поверхности клетки зависит также от уровня гормонов. Например, когда содержание в крови гормона возрастает, то число рецепторов для этого гормона на поверхностной мембране снижается. Этим самым как бы происходит сниже­ние чувствительности клетки к гормону, находящемуся в крови в избыточном состоянии. И наоборот, если уровень гормона в крови снижается, то концентрация рецепторов для этого гормона возрастает, повышается чувствительность клетки к данному гормону. Этот принцип регуляции числа гормональных рецепторов внутри и на поверхности клетки-ми­шени получил название «даун-регуляции».

Для взаимодействия гормона с рецептором важно его сродство к этому рецептору. Эта величина тоже может модулироваться. Например, при закислении среды с рН 7,4 до 7,0 связывание инсулина с инсулиновыми рецепторами снижается на 50%. Установлено, что «пустые» рецепторы имеют высокое сродство к гормону, когда же «оккупированы», то их сродство к гормону снижается.

Сродство к гормону, или количество функционально активных рецепторов, может регу­лироваться (в условиях патологии) за счет появления аутоантител к специфическим рецеп­торам. Например, при некоторых формах сахарного диабета несмотря на достаточно высо­кий уровень инсулина в крови имеет место функциональная недостаточность инсулярного аппарата — часть инсулиновых рецепторов оккупирована антителами.

МЕХАНИЗМ ДЕЙСТВИЯ ГОРМОНОВ

Взаимодействие гормона с рецептором — это обязательный начальный этап, запускаю­щий целый каскад реакций, в результате которого гормон оказывает свой физиологический эффект, например, повышение синтеза специфических белков-рецепторов, повышение син­теза гормона, сокращение гладкомышечных клеток и т. п. Рассмотрим более конкретно эти каскады.

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

Папиллярные узоры пальцев рук — маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни.

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ — конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой.

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰).

источник

Механизм действия гормонов белковой природы.

Гормоны белковой природы взаимодействуют с рецепторами, находящимися на наружной поверхности цитоплазматической мембраны. Рецептор связан с ферментом, встроенным в мембрану, – аденилатциклазой. Комплекс гормона с рецептором активизирует аденилатциклазу, которая расщепляет АТФ с образованием циклического аденозинмонофосфата (цАМФ). Циклический АМФ выполняет функцию «второго посредника» (первым является сам гормон), активизируя фермент протеинкиназу, которая содержится во всех клетках. Киназы модулируют активность различных белков путем их фосфорилирования. Характерной особенностью действия этих гормонов является относительная быстрота возникновения ответной реакции, что обусловлено активацией предшествующих уже синтезированных ферментов и других белков. Регуляция секреции гормонов.Существуют различные способы эндогенной регуляции секреции гормонов. Гормональная регуляция. В гипоталамусе вырабатываются 6 либеринов (кортиколиберин, тиролиберин, гонадолиберин, меланолиберин, пролактолиберин, соматолиберин) и 3 статина (соматостатин, меланостатин, пролактостатин), которые через портальную систему из гипоталамуса попадают в аденогипофиз и усиливают (либерины) или тормозят (статины) продукцию соответствующих гормонов. Гормоны гипофиза – АКТГ, ЛГ, ФСГ, ТТГ – в свою очередь вызывают изменение продукции периферических гормонов. Например, кортиколиберин повышает выработку АКТГ аденогипофизом, АКТГ повышает продукцию глюкокортикоидов корой надпочечников. Такого рода каскадныймеханизм имеет большое значение: в эндокринной цепи во много раз усиливается действие малых количеств исходного гормона. Регуляция продукции гормона по механизму обратной связи. По направленности физиологического действия обратные связи могут быть отрицательными и положительными. Отрицательные связи самоограничивают работу системы. Положительные связи самозапускают ее. Некоторые железы внутренней секреции (поджелудочная железа, околощитовидные железы) являются гипофиз-независимыми железами. Деятельность этих органов зависит от концентрации веществ, уровень которых регулируется этими гормонами. Так, уровень паратгормона околощитовидных желез и кальцитонина щитовидной железы определяется концентрацией ионов кальция в крови.Глюкоза регулирует продукцию инсулина и глюкагона поджелудочной железой.

3. Регуляция с участием структур ЦНС. Симпатическая и парасимпатическая нервные системы вызывают изменения в продукции гормонов. В большинстве случаев нервные волокна, подходящие к железам внутренней секреции, регулируют не секреторные клетки, а тонус кровеносных сосудов, от которых зависит кровоснабжение и функциональная активность желез. Например, при активации симпатической нервной системы повышается продукция адреналина в мозговом веществе надпочечников.

27 ВОПРОС: Гипоталамо-гипофизарная система. Нейросекреты гипоталамуса, гормоны гипофиза, их физиологическая роль, механизм действия, регуляция их продукции и болезни, обусловленные их недостаточной или избыточной продукцией.

Ответ:Связь аденогипофиза с гипоталамусом формируется на 7-ом месяце, когда формируется первичная капиллярная сеть.

Гипофиз новорожденного функционально зрелый и имеет следующее. Аденогипофиз состоит из эпителиальных тяжей – трабекул. Между ними проходят синусоидные капилляры. Среди клеток аденогипофиза различают хромофильные и хромофобные эндокриноциты. Нейрогипофизвыполняет роль нейрогемального образования, в котором накапливаются гормоны некоторых нейросекреторных ядер переднего гипоталамуса. Нейрогипофиз содержит: отростки и терминали нейросекреторных клеток СОЯ и ПВЯ, по которым транспортируются АДГ (антидиуретический гормон, или вазопрессин) и окситоцин (накопительные тельца Херринга). Из гипоталамуса из СОЯ и ПВЯ аксоны покидают гипоталамусв составе гипоталамо-гипофизарного тракта, идут через медиальную эминенцию, пересекая гематоэнцефалический барьер, и через гипофизарную ножку проникают в заднюю долю гипофиза (нейрогипофиз), образуя терминали (накопительные тельца Херринга), которые оканчиваются на капиллярах. В тельцах Херринга находятся гранулы нейросекрета.

В СОЯ главным образом образуется антидиуретический гормон (АДГ), или вазопрессин, а в ПВЯ – окситоцин.

Аксоны нейросекреторных клеток этих ядер формируют аксовазальные синапсы на капиллярах первичной капиллярной сети в срединном возвышении (медиальной эминенции). Эта сеть далее собирается в воротные вены, через гипофизарную ножку проникает в переднюю долю гипофиза (аденогипофиз) и распадается на вторичную капиллярную сеть между тяжами аденоцитов.

Нейрогормоны, которые вырабатываются в мелкоклеточных ядрах, называются рилизинг-гормонами (пептидной природы). Гормоны, стимулирующие выработку гормонов аденогипофиза, называются либеринами, а тормозящие – статинами.

В аденогипофизе образуются следующие гормоны: (1) — адренокортикотропный (АКТГ); (2) — тиротропный (ТТГ), или тиротропин, (3) гонадотропные (фолликулостимулирующий (ФСГ), или фоллитропин, и лютеинизирующий (ЛГ), или лютропин), (4) — соматотропный (СТГ), или гормон роста, (5) — пролактин. Первые 4 гормона – тропные гормоны, они регулируют функции периферических желез внутренней секреции. Соматотропин и пролактин – эффекторные гормоны, сами действуют на ткани-мишени.

АДГ в клетках собирательных трубочек почек увеличивает реабсорбцию воды, способствует концентрированию и уменьшению объема мочи; в больших концентрациях вызывает сужение артерий (отсюда название гормона вазопрессин) и повышение артериального давления крови. АДГ участвует также в формировании мотивации жажды, питьевого поведения и в механизмах памяти.

Окситоцинвызывает усиление сокращения матки при родах и в послеродовой период; сокращения миоэпителиальных клеток протоков молочных желез, что вызывает выделение молока при кормлении новорожденных. Синтез окситоцина увеличивается в конце беременности под влиянием женских половых гормонов эстрогенов, а его выделение усиливается рефлекторным путем при раздражении механорецепторов шейки матки при ее растяжении во время родов, а также при стимуляции механорецепторов сосков молочных желез во время кормления. Недостаточная функция гормона проявляется слабостью родовой деятельности матки, нарушением выделения молока.

Эффекторные гормоны гипофиза — меланоцитстимулирующий гормон (МСГ), пролактин, гормон роста.

Меланоцитстимулирующий гормон (МСГ, интермедин) вырабатывается в промежуточной зоне гипофиза у плода и новорожденных. У взрослого человека эта зона редуцирована и МСГ вырабатывается очень ограниченно. Его функции в организме взрослого человека выполняет АКТГ и β-липотропин. МСГ в организме: индуцирует синтез меланина; вызывает дисперсию меланосом в клетках кожи, что сопровожаается по­темнением кожи. Избыток АКТГ и β-липотропина наблюдается у женщин во время беременности, что приводит к усиленной пигментации естественно пигментированных участков кожи.

Гормон роста (ГР, соматотропин, соматотропный гормон) — усиливает процессы биосинтеза белка, нуклеиновых кислот, рост мягких и твердых тканей; облегчает утилизацию глюкозы в тканях; способствует мобилизации жиров из депо и распаду жирных высших кислот; задерживает в организме азот, фосфор, кальций, натрий, воду; усиливает синтез и секрецию гормонов соматомединов в печени и хрящевой ткани, инсулина и глюкагона – в поджелудочной железе, способствует превращению тироксина (Т4) в трийодтиронин (Т3); повышает основной обмен и способствует сохранению мышечной ткани во взрослом организме. Избыточная секреция ГР в детском возрасте проявляется резким ускорением роста (более 12см/год) и развитием гигантизма у взрослого человека (рост тела у мужчин превышает 2 м, а у женщин – 1,9 м). Пропорции тела сохранены. Гиперпродукция ГР у взрослых людей сопровождается АКРОМЕГАЛИЕЙ – непропорциональным увеличением отдельных частей тела, которые еще сохранили способность к росту. НЕДОСТАТОЧНАЯ ФУНКЦИЯ ГР в детском возрасте проявляется резким угнетением скорости роста (менее 4 см/год) при сохранении пропорций тела и умственного развития. При этом у взрослого человека отмечается карликовость: рост женщин не превышает 120 см, а мужчин – 130 см, нередко сопровождающаяся половым недоразвитием. Второе название этого заболевания – гипофизарный нанизм. У взрослого человека недостаток секреции ГР проявляется снижением основного обмена, массы скелетных мышц и нарастанием жировой массы.

Пролактин (лактотропный гормон, ЛТГ) стимулирует развитие железистой ткани в молочной железе, а затем – образование молока (лактоальбумина, жиров и углеводов): способствует формированию материнского инстинкта; подавляет выделение гонадотропинов; стимулирует развитие желтого тела и образование им прогестерона; участвует в поддержании осмотического гомеостаза и предупреждении избыточной потери воды и натрия; стимулирует развитие тимуса. Избыток гормона (гиперпролактинемия) вызывает у женщин галакторею (повышенное образование и выделение молока) и гипогонадизм (снижение функции половых желез); у мужчин – импотенцию и бесплодие. Недостаточность пролактина проявляется неспособностью к лактации.

Тропные гормоны гипофиза — регулируют функции периферических эндокринных желез и клеток, а также неэндокринных клеток.

1) Тиреотропный гормон (тиреотропин, ТТГ) — стимуляция продукции и секреции Т4 и Т3, а также в гипертрофии и гиперплазии щитовидной железы. Избыток ТТГ приводит к увеличению размеров щитовидной железы (зоб), ее гиперфункции (при достаточном количестве йода) с эффектами избытка тиреоидных гормонов (тахикардия, повышение основного обмена и температуры тела, пучеглазие и др.). Недостаток ТТГ ведет к быстрому или постепенному развитию гипотериоза: возникают сонливость, вялость, адинамия, брадикардия и др.

2) Гонадотропины:ФСГ (фолликулостимулирующий гормон, или фоллитропин) и ЛГ (лютеинизирующий гормон, или лютропин) вырабатываются в одних и тех же базофильных клетках (гонадотрофах) аденогипофиза, регулируют У МУЖЧИН И ЖЕНЩИН АКТИВНОСТЬ И РАЗВИТИЕ ПОЛОВЫХ ЖЕЛЕЗфункциигонадотропиновв женском организме: созревание первичного фолликула и увеличение концентрации эстрадиола в крови под влиянием возрастающего уровня ФСГ в течение первых дней менструального цикла: пик ЛГ в середине цикла служит непосредственной причиной разрыва фолликула и превращения его в желтое тело. Латентный период со времени пика ЛГ до овуляции составляет от 24 ч до 36. ЛГ является ключевым гормоном стимуляции и образования эстрогенов и прогестерона в яичниках. У детей тормозит выделение гонадотропинов гормон эпифизамелатонин. Пролактин также тормозит выделение ФСГ и ЛГ. Недостаток ФСГ и ЛГ сопровождается изменениями или прекращением менструального цикла. У кормящих матерей эти изменения цикла могут быть весьма выражены из-за высокого уровня пролактина.

Функции гонадотропинов в мужском организме: ФСГспособствует росту яичек, стимулирует клетки Сертоли и способствует формированию в них андрогенсвязывающего белка, а также увеличивает выработку этими клетками полипептида ингибина, который снижает секрецию ФСГ и люлиберина; ЛГ стимулирует созревание и дифференцировку клеток Лейдига, а также синтез и секрецию этими клетками тестостерона; совместное действие ФСГ, ЛГ и тестостерона упорядочивает сперматогенез. Секреция гонадотропинов у мужчин регулируется люлиберином (активация), свободным тестостероном (угнетение) и ингибином (угнетение).

3) Адренокортикотропный гормон (кортикотропин, АКТГ) —физиологические эффекты АКТГ подразделяют на надпочечниковые и вненадпочечниковые. Надпочечниковый эффект — АКТГ стимулирует рост и развитие пучковой и сетчатой зон в коре надпочечников, а также синтез и выделение гормонов: глюкокортикоидов (кортизола и кортикостерона из пучковой зоны) и в меньшей степени половых (в основном андрогенов из сетчатой зоны). В незначительной степени АКТГ также стимулирует выделение альдостерона из клубочковой зоны коры надпочечников. Вненадпочечниковое влияние АКТГ – это непосредственное действие гормона на неэндокринные органы: а) липолитическое – на жировую ткань; б) повышение секреции инсулина и гормона роста; в) развитие гипогликемии из-за стимуляции секреции инсулина; г) усиление пигментации кожи вследствие увеличения образования меланина. Избыток АКТГ отмечается в норме при беременности, а также при первичной или вторичной (после удаления надпочечников) гиперфункции кортикотрофов гипофиза и проявляется гиперпигментацией кожи. Дефицит АКТГ ведет к недостаточности секреции глюкокортикоидов из коры надпочечников, что сопровождается выраженными метаболическими нарушениями и снижением устойчивости организма к влияниям среды.

В 90% случаев гиперсекреция АКТГ вызывает — Болезнь Кушинга —вызвана аденомой (или диффузной гиперплазией клеток, вырабатывающих этот гормон, из-за повышенной продукции гипоталамусом кортикотропин-рили-зинг фактора). У женщин встречается в 8 раз чаще. Клинические проявления 1) ожирение центрального происхождения, лунообразное лицо, скопление жировой ткани по задней поверхности шеи и над ключицами, потерю мышечной массы в проксимальных отделах конечностей, тонкую кожу с экхимозами и стриями, катаракту, остеопороз, аменорею, сахарный диабет, у детей замедление роста, микозы в результате иммуносупрессии; 2) избыток андрогенов проявляется гирсутизмом и акне.

28 ВОПРОС: Гормоны щитовидной, паращитовидной и поджелудочной желез. Физиологическая роль гормонов гипер- и гипофункция желез.

Ответ: Щитовидная железа синтез тиреоидных гормонов (Т4 и Т3), их транспортировку и действие на клетки-мишени. По своей структуре Т4 и Т3 являются йодированными производными аминокислоты L-тирозина. Синтез Т4 и Т3 зависит от поступления в фолликулярные клетки щитовидной железы достаточного количества йода.

Влияют на рост и созревание тканей, общие энергозатраты и кругооборот практи­чески всех субстратов (белков, липидов, углеводов, нуклеиновых кислот), витаминов и гормонов, включая и сами тиреоидные гормоны. Выделяют метаболические и физиологические эффекты тиреоидных гормонов.

Метаболические эффекты: 1) усиление поглощения кислорода тканями с активацией окислительных процессов и увеличением основного обмена; 2) стимуляция синтеза белка (анаболическое действие); 3) усиление окисления жирных кислот и снижение их уровня в крови; 4) гипергликемия за счет активации гликогенолиза в печени.

Физиологические эффекты: 1) обеспечение нормальных процессов роста, развития и дифференцирования клеток, тканей и органов, в том числе ЦНС (миелинизация нервных воло­кон, дифференцирование нейронов), а также процессов физиологической регенерации тканей; 2) активация симпатических влияний (тахикардия, потливость, сужение сосудов и т.д.); 3) повышение теплообразования и температуры тела; 4) повышение возбудимости ЦНС и активации психических процессов; 5) поддержание нормальной половой жизни и репродуктивной функции (способствуют синтезу ГР, ФСГ и ЛГ); 6) развитие мышечной системы, увеличение силы и скорости мышечных сокращений.

При избыточной продукции тиреоидных гормонов возникает состояние гипертиреоза, или тиреотоксикоза: усиление основного обмена (гиперметаболизмом) и температуры тела; повышением тонуса симпатического отдела — (тахикардия, потливость, непереносимость тепла и др.); уменьшением массы тела, несмотря на сохраненный или повышенный аппетит; повышением возбудимости, эмоциональной лабильностью; бессонницей. Недостаточная продукция тиреоидных гормонов приводит к развитию гипотиреоза приводит к снижению метаболизма – заболевание — «микседема» – слизистый отек. Он происходит из-за накопления мукополисахаридов в базальных слоях кожи и задержке воды, что приводит к одутловатости лица и тестообразной консистенции кожи, а также к повышению массы тела, несмотря на снижение аппетита. У больных микседемой отмечается психическая и двигательная заторможенность, сонливость, зябкость, снижение интеллекта (тупое выражение лица) и активности симпатического отдела АНС и др. Гипотиреоз в детском возрасте может привести к кретинизму – физи­ческому (малый рост, нарушение пропорций тела), половому и умственному недоразвитию.

Парафолликулярные К-клетки щитовидной железы синтезируют гормон кальцитонин – вызывает снижение уровня кальция (Са 2+ ) и фосфатов в крови за счет: 1) облегчения минерализации (стимуляция клеток остеобластов и отложения Са 2+ и фосфатов в костях) и подавления резорбции (угнетение остеокластов и торможение выведения Са 2+ и фосфатов из костной ткани); 2) снижения реабсорбции Са 2+ и фосфатов из первичной мочи в почечных канальцах.

Паращитовидные (околощитовидные, железы) синтезгормона является паратирин (паратиреоидный гормон (ПТГ), или паратгормон). ПТГ относится к кальцийрегулирующим гормонам. Функция ПТГ: повышает содержание Са 2+ в крови за счет специфического действия на костную ткань, почки и кишечник. Действие гормона на костную ткань зависит от его концентрации: физиологические концентрации усиливают процессы новообразования и минерализации кости, высокие — дают катаболический (остеолитический) эффект. В почках ПТГ усиливает выделение фосфатов в проксимальных канальцах нефрона (вызывая фосфатурию) и увеличивает в дистальных канальцах реабсорбцию Са 2+ , а также стимулирует синтез активной формы витамина D3– гормона кальцитриола. На кишечник ПТГ действует через кальцитриол, усиливая всасывание Са 2+ и фосфатов. Таким образом, ПТГ регулирует уровень С 2+ по трем основным механизмам: 1) уменьшение экскреции Са 2+ с мочой; 2) усиление поглощения Са 2+ из кишечника; 3) при недостаточности первых двух факторов – ускорение метаболического разрушения костной ткани. Регуляция секреции ПТГ. Осуществляется по механизму обратной связи уровнем ионизированного Са 2+ крови. Гипокальциемия (уменьшение Са 2+ в крови) и симпатические влияния через β-адренорецепторы стимулируют продукцию ПТГ. Гиперкальциемия и гормон почек кальцитриол (активная фор­ма витамина D3) подавляют секрецию ПТГ.

Проявления нарушения функции паращитовидных желез. Избыточная продукция ПТГ у человека приводит к резорбции и деминерализации костей, что сопровождается тяжелыми переломами позвоночника или головки бедренной кости; гиперкальциемией и отложением камней в почках; мышечной слабостью. Недостаточное выделение или отсутствие ПТГ (например, после удаления паращитовидных желез) вызывает гипокальциемию и резкое повышение нервно-мышечной возбудимости вплоть до развития судорожных приступов (тетании) и гибели организма.

Поджелудочная железа — эндокринную функцию выполняют клетки островков Пирогова – Лангерганса и составляющие 1 – 2% от ее массы. В островках располагаются несколько видов эндокринных клеток: α-клетки, образующие глюкагон (их в среднем около 20%); β-клетки, производящие инсулин (от 65 до 80%); дельта -клетки (от 2 до 8%), синтезирующие соматостатин; РР-клетки (менее 1 %), продуцирующие панкреатический полипептид. Основными гормонами поджелудочной железы, регулирующими обменные процессы, являются инсулин и глюкагон.

Инсулин усиливает транспорт глюкозы в клетки, стимулирует синтез гликогена в печени и мышцах, подавляет глюконеогенез и гли-когенолиз в печени, понижает уровень сахара в крови; стимулирует транспорт аминокислот через цитоплазматическую мембрану в клетку и уменьшает распад белка, стимулирует синтез белка в клетках; стимулирует включение триглицеридов и жирных кислот в жировую ткань, усиливает синтез липидов и подавляет липолиз в адипоцитах. Таким образом, он оказывает общее анаболическое действие на инсулинзависимые ткани (усиление синтеза в них углеводов, жиров, белков и нуклеиновых кислот). Тормозят выделение инсулина: гипогликемия, соматостатин (гормон Д-клеток), активация симпатического отдела АНС.

Глюкагон– он является катаболическим гормоном и антагонистом инсулина, он повышает содержание глюкозы в крови за счет усиления гликогенолиза и стимуляции глюконеогенеза в печени; активирует липолиз и подавляет синтез липидов; стимулирует катаболизм белков в тканях и увеличивает синтез мочевины. Регуляция секреции глюкагона —усиливается при гипогликемии, активации симпатического отдела АНС и под влиянием гормона роста и угнетается при гипергликемии и поддействием соматостатина.

Чаще всего нарушения эндокринной функции поджелудочной железы возникают при повреждении β-клеток антителами или вирусами Коксаки. Это ведет к падению уровня инсулина в крови, гипергликемии и развитию заболевания, получившего название «сахарный диабет» или «сахарное мочеизнурение» — полиурия (4 – 6 л/сут), жажда и повышенное потребление жидкости. Гипергликемия возникает вследствие того, что углеводы не могут применяться для нужд энергетики клетками скелетных мышц, печени, жировой ткани, сердца эти клетки начинают использовать для получения энергии липиды и белки, что сопровождается накоплением кетоновых тел (характерный запах при дыхании и/или мочеиспускании, а также развитием ацидоза, диабетической комы, потерей сознания и гибель организма). Сахарный диабет при поражении β-клеток поджелудочной железы (сахарный диабет I типа, инсулинзависимый, ювенильный, возникающий обычно до 30 лет), и при снижением количества инсулиновых рецепторов в клетках-мишенях (сахарный диабет II типа, инсулиннезависимый, или диабет взрослых, возникающий обычно после 40 лет).

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций.

источник