Биологическая роль гормонов гипоталамуса и гипофиза

1.4. Гормоны гипоталамуса и гипофиза.

Как уже упоминалось, местом непосредственного взаимодействия высших отделов центральной нервной системы и эндокринной системы является гипоталамус. Это небольшой участок переднего мозга, который расположен непосредственно над гипофизом и связан с ним при помощи системы кровеносных сосудов, образующих портальную систему.

1. Гормоны гипоталамуса. В настоящее время известно, что нейросекреторные клетки гипоталамуса продуцируют 7 либеринов (соматолиберин, кортиколиберин, тиреолиберин, люлиберин, фоллиберин, пролактолиберин, меланолиберин) и 3 статина (соматостатин, пролактостатин, меланостатин). Все эти соединения являются пептидами.

Гормоны гипоталамуса через специальную портальную систему сосудов попадают в переднюю долю гипофиза (аденогипофиз). Либерины стимулируют, а статины подавляют синтез и секрецию тропных гормонов гипофиза. Эффект либеринов и статинов на клетки гипофиза опосредуется цАМФ- и Са 2+ -зависимыми механизмами.

Характеристика наиболее изученных либеринов и статинов приведена в таблице 2.

Таблица 2. Гипоталамические либерины и статины

Основные биологические эффекты

Стимулирует секрецию адренокортикотропного гормона (АКТГ)

Секреция стимулируется при стрессах и подавляется АКТГ

Стимулирует секрецию тиреотропного гормона (ТТГ) и пролактина

Секрецию тормозят тиреоидные гормоны

Стимулирует секрецию соматотропного гормона (СТГ)

Секрецию стимулирует гипогликемия

Стимулирует секрецию фолликулостимулирующего гормона (ФСГ) и лютеинизирующего гормона (ЛГ)

У мужчин секреция вызывается снижением содержания тестостерона в крови, у женщин – снижением концентрации эстрогенов. Высокая концентрация ЛГ и ФСГ в крови подавляет секрецию

Тормозит секрецию СТГ и ТТГ

Секреция вызывается физической нагрузкой. Фактор быстро инактивируется в тканях тела.

Тормозит секрецию пролактина

Секрецию стимулирует высокая концентрация пролактина и подавляют эстрогены, тестостерон и нервные сигналы при сосании.

Угнетает секрецию МСГ (меланоцитостимулирующего гормона)

Секрецию стимулирует меланотонин

2. Гормоны аденогипофиза. Аденогипофиз (передняя доля гипофиза) продуцирует и выделяет в кровь ряд тропных гормонов, регулирующих функцию как эндокринных, так и неэндокринных органов. Все гормоны гипофиза являются белками или пептидами. Внутриклеточным посредником всех гипофизарных гормонов (кроме соматотропина и пролактина) служит циклический АМФ (цАМФ). Характеристика гормонов передней доли гипофиза приводится в таблице 3.

Таблица 3. Гормоны аденогипофиза

Основные биологические эффекты

Адренокортикотропный гормон (АКТГ)

Стимулирует синтез и секрецию стероидов корой надпочечников

Усиливает синтез и секрецию тиреоидных гормонов

Стимулируется тиреолиберином и подавляется тиреоидными гормонами

Соматотропный гормон (гормон роста, СТГ)

Стимулирует синтез РНК и белка, рост тканей, транспорт глюкозы и аминокислот в клетки, липолиз

Стимулируется соматолиберином, подавляется соматостатином

Фолликулостимулирующий гормон (ФСГ)

Семенные канальцы у мужчин, фолликулы яичников у женщин

У мужчин повышает образование спермы, у женщин – образование фолликулов

Лютеинизирующий гормон (ЛГ)

Интерстициальные клетки семенников (у мужчин) и яичников (у женщин)

Вызывает секрецию эстрогенов, прогестерона у женщин, усиливает синтез и секрецию андрогенов у мужчин

Молочные железы (альвеолярные клетки)

Стимулирует синтез белков молока и развитие молочных желёз

Меланоцитостимулирующий гормон (МСГ)

Повышает синтез меланина в меланоцитах (вызывает потемнение кожи)

3. Гормоны нейрогипофиза. К гормонам, секретируемым в кровоток задней долей гипофиза, относятся окситоцин и вазопрессин. Оба гормона синтезируются в гипоталамусе в виде белков-предшественников и перемещаются по нервным волокнам в заднюю долю гипофиза.

Окситоцин – нонапептид, вызывающий сокращения гладкой мускулатуры матки. Он используется в акушерстве для стимуляции родовой деятельности и лактации.

Вазопрессин – нонапептид, выделяемый в ответ на повышение осмотического давления крови. Клетками-мишенями для вазопрессина являются клетки почечных канальцев и гладкомышечные клетки сосудов. Действие гормона опосредовано цАМФ. Вазопрессин вызывает сужение сосудов и повышение артериального давления, а также усиливает реабсорбцию воды в почечных канальцах, что приводит к снижению диуреза.

4. Основные виды нарушений гормональной функции гипофиза и гипоталамуса. При дефиците соматотропного гормона, возникающем в детском возрасте, развивается карликовость (низкий рост). При избытке соматотропного гормона, возникающем в детском возрасте, развивается гигантизм (аномально высокий рост).

При избытке соматотропного гормона, возникающем у взрослых (в результате опухоли гипофиза), развивается акромегалия – усиленный рост кистей рук, ступней, нижней челюсти, носа.

При недостатке вазопрессина, возникающем вследствие нейротропных инфекций, черепно-мозговых травм, опухолей гипоталамуса, развивается несахарный диабет. Основным симптомом этого заболевания является полиурия – резкое увеличение диуреза при пониженной (1,001 – 1,005) относительной плотности мочи.

источник

34. Гормоны гипофиза и их биологическая роль

Передняя доля гипофиза вырабатывает белковые гормоны, шесть из которых выделены в химически чистом виде. Их строение в настоящее время полностью расшифровано.

-Гормон роста. На рост организма влияют многие гормоны, но наиболее важную роль в этом сложном процессе играет именно гипофизарный гормон роста (соматотропин). После удаления гипофиза рост практически прекращается. Введение этого гормона молодым животным ускоряет рост, а у взрослых может приводить к его возобновлению, причем исследование обмена веществ в этих случаях всегда выявляет снижение экскреции (выведения) азота из организма. Задержка азота – необходимый признак истинного роста, свидетельствующий о том, что действительно происходит образование новых тканей, а не просто увеличение массы тела за счет накопления жира или воды.

Другие нарушения функции гипофиза могут сопровождаться избыточным выделением гормона роста, порождающим гигантизм.

-Лактогенный гормон гипофиза (пролактин) стимулирует лактацию – образование молока в молочных железах. Стойкая лактация в сочетании с аменореей (аномальным отсутствием или подавлением менструальных выделений) может возникать при опухоли гипофиза. Это расстройство бывает также связано с нарушениями секреторной активности гипоталамуса, в норме подавляющей высвобождение пролактина. Пролактин присутствует в гипофизе особей не только женского, но и мужского пола, причем не только у млекопитающих, но и у низших позвоночных. У некоторых птиц пролактин стимулирует развитие зобного мешка. У рыб пролактин участвует в регуляции осмотического давления крови.

-Тиреотропный гормон гипофиза (тиреотропин) стимулирует рост щитовидной железы и ее секреторную активность. После удаления гипофиза функция щитовидной железы полностью прекращается и она уменьшается в размерах. Введение тиреотропина может вызвать избыточную активность щитовидной железы. Таким образом, нарушения ее функции могут быть следствием не только заболеваний самой железы, но и патологических процессов в гипофизе и соответственно требуют разного лечения.

-Адренокортикотропный гормон гипофиза (АКТГ, кортикотропин) стимулирует кору надпочечников. Функция коры надпочечников в отсутствие АКТГ прекращается не полностью. Когда стимуляция со стороны гипофиза отсутствует, кора надпочечников сохраняет способность секретировать необходимый для жизни гормон альдостерон, который регулирует содержание натрия и калия в организме. Однако без АКТГ надпочечники вырабатывают недостаточное количество другого жизненно важного гормона, кортизола, и теряют способность усиливать при необходимости его секрецию.

-Гонадотропные гормоны (гонадотропины). Передняя доля гипофиза секретирует два гонадотропных гормона. Один из них, фолликулостимулирующий гормон, стимулирует развитие яйцеклеток в яичниках и сперматозоидов в семенниках. Второй называется лютеинизирующим гормоном.

Гормоны, секретируемые передней долей гипофиза, необходимы для надлежащего использования в организме углеводов, поступающих с пищей; кроме того, они выполняют и другие важные функции в обмене веществ. Особая роль в регуляции метаболизма принадлежит, по-видимому, гормону роста и адренокортикотропному гормону, которые функционально тесно связаны с гормоном поджелудочной железы, инсулином. Хорошо известно, что в отсутствие инсулина развивается хроническое заболевание – сахарный диабет. При одновременном удалении поджелудочной железы и гипофиза большинство симптомов диабета отсутствует.

Промежуточная доля гипофиза секретирует меланоцит-стимулирующий гормон (МСГ, интермедин), который увеличивает размеры некоторых пигментных клеток в коже низших позвоночных.

Задняя доля гипофиза содержит два гормона, причем оба вырабатываются в гипоталамусе, а оттуда поступают в гипофиз. Один из них, окситоцин, – наиболее активный из присутствующих в организме факторов, вызывающий такие же сильные сокращения матки, как при родах. Этот гормон иногда применяют в акушерстве для стимуляции затянувшихся родов, но значение его нормальных концентраций в родовой деятельности не установлено. Окситоцин вызывает также сокращения мышечных стенок желчного пузыря, кишечника, мочеточников и мочевого пузыря.

Второй гормон, вазопрессин, при введении в организм вызывает многочисленные эффекты, в том числе повышение кровяного давления вследствие сужения сосудов и уменьшение диуреза (выведения мочи). Однако в нормальных условиях он оказывает в организме лишь одно известное действие – регулирует количество воды, выделяющееся через почки.

источник

Гормоны гипоталамуса и их роль в регуляции эндокринной системы

В регуляции функций эндокринной системы и поддержания водно-электролитного баланса в организме человека важная роль принадлежит гормонам гипоталамуса. Рассмотрим подробнее их функции.

Анатомия и физиология

Гипоталамус располагается в основании головного мозга под таламусом и является местом, в котором осуществляется взаимодействие между ЦНС и эндокринной системой. В его нервных клетках образуются вещества с очень высокой биологической активностью. Через систему капилляров они достигают гипофиза и регулируют его секреторную деятельность. Таким образом, существует прямая связь между выработкой гормонов гипоталамуса и гипофиза – фактически они представляют собой единый комплекс.

Биологически активные вещества, вырабатываемые нервными клетками гипоталамуса и стимулирующие функции гипофиза, называются либеринами или ризлинг-факторами. Вещества, которые наоборот подавляют секрецию гипофизарных гормонов, получили название статинов или ингибирующих факторов.

Гипоталамус вырабатывает следующие гормоны:

  • тиролиберин (ТРФ);
  • кортиколиберин (КРФ);
  • фоллилиберин (ФРЛ);
  • люлиберин (ЛРЛ);
  • пролактолиберин (ПРЛ);
  • соматолиберин (СЛР);
  • меланолиберин (МЛР);
  • меланостатин (МИФ);
  • пролактостатин (ПИФ);
  • соматостатин (СИФ).

По химическому строению все они являются пептидными, т. е. относятся к подклассу белков, однако точные химические формулы установлены только для пяти из них. Сложности в их изучении обусловлены тем, что в тканях гипоталамуса их содержится крайне мало. Например, для того чтобы выделить в чистом виде всего 1 мг тиролиберина необходимо подвергнуть обработке примерно тонну гипоталамусов, полученных от 5 млн овец!

На какие органы влияют

Либерины и статины, вырабатываемые гипоталамусом, достигают через систему портальных сосудов гипофиза, где стимулируют биосинтез тропных гипофизарных гормонов. Последние с током крови достигают органов-мишеней и оказывают на них свое действие.

Рассмотрим этот процесс упрощенно и схематично.

Рилизинг-факторы посредством портальных сосудов достигают гипофиза. Нейрофизин стимулирует клетки задней доли гипофиза, усиливая тем самым выделение окситоцина и вазопрессина.

Остальные рилизинг-факторы воздействуют на передний отдел гипофиза. Схема их влияния представлена в таблице:

Тропный гормон, вырабатываемый гипофизом

Функции гормонов гипоталамуса

На сегодняшний день наиболее полно изучены биологические функции следующих гипоталамических релизинг-факторов:

  1. Гонадолиберины. Оказывают регуляторное действие на выработку половых гормонов. Обеспечивают правильный менструальный цикл и формируют половое влечение. Именно под их влиянием в яичнике происходит созревание яйцеклетки и ее выход из граафового пузырька. Недостаточная секреция гонадолиберинов приводит к снижению потенции у мужчин и бесплодию у женщин.
  2. Соматолиберин. На секрецию гормона роста гипоталамус влияет именно выделением соматолиберина. Снижение выработки этого рилизинг-фактора вызывает уменьшение выделения гипофизом соматотропина, что в конечном итоге проявляется замедленным ростом, карликовостью. И наоборот, избыток соматолиберина способствует высокому росту, акромегалии.
  3. Кортиколиберин. Служит для усиления секреции гипофизом адренокортикотропина. Если он производится в недостаточном количестве, то у человека развивается надпочечниковая недостаточность.
  4. Пролактолиберин. Активно вырабатывается во время беременности и в период лактации.
  5. Тиролиберин. Отвечает за образование гипофизом тиреотропина и повышение в крови тироксина, трийодтиронина.
  6. Меланолиберин. Осуществляет регуляцию образования и разложения пигмента меланина.

Значительно лучше изучена физиологическая роль окситоцина и вазопрессина, поэтому поговорим об этом подробнее.

Окситоцин

Окситоцин способен оказывать следующие эффекты:

  • способствует отделению молока из груди в период лактации;
  • стимулирует сокращения матки;
  • усиливает сексуальное возбуждение как у женщин, так и у мужчин;
  • устраняет чувство тревоги и страха, способствует повышению доверия к партнеру;
  • несколько уменьшает диурез.

Результаты двух независимых клинических исследований, проведенных в 2003 и 2007 годах, показали, что применение окситоцина в комплексной терапии больных аутизмом приводило к расширению у них границ эмоционального поведения.

Группой австралийских ученых было установлено, что внутримышечное введение окситоцина делало подопытных крыс невосприимчивыми к действию этилового спирта. В настоящее время эти исследования продолжаются, и специалисты высказывают предположение, что возможно окситоцин в дальнейшем найдет применение в лечении людей с алкогольной зависимостью.

Вазопрессин

Основными функциями вазопрессина (АДГ, антидиуретический гормон) являются:

  • сужение кровеносных сосудов;
  • удержание воды в организме;
  • регуляция агрессивного поведения;
  • повышение артериального давления за счет увеличения периферического сопротивления.

Нарушение функций вазопрессина приводит к развитию заболеваний:

  1. Несахарный диабет. В основе патологического механизма развития лежит недостаточная секреция вазопрессина гипоталамусом. У пациента за счет уменьшения реабсорбции воды в почках резко возрастает диурез. В тяжелых случаях суточное количество мочи может достигать 10-20 литров.
  2. Синдром Пархона (синдром неадекватной секреции вазопрессина). Клинически проявляется отсутствием аппетита, тошнотой, рвотой, повышением мышечного тонуса и нарушениями сознания вплоть до комы. При ограничении поступления воды в организм состояние больных улучшается, а при обильном питье и внутривенных инфузиях, наоборот, ухудшается.

Видео

Предлагаем к просмотру видеоролик по теме статьи.

источник

ГОРМОНЫ ГИПОТАЛАМУСА

Гипоталамус служит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. Природа связей, существующих между ЦНС и эндокринной системой, стала проясняться в последние десятилетия, когда из гипоталамуса были выделены первые гуморальные факторы, оказавшиеся гормональными веществами с чрезвычайно высокой биологической активностью. Потребовалось немало труда и экспериментального мастерства, чтобы доказать, что эти вещества образуются в нервных клетках гипоталамуса, откуда по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение (возможно, и биосинтез). Эти вещества получили сначала наименование нейрогормонов, а затем рилизинг-факторов (от англ. release – освобождать), или либеринов. Вещества с противоположным действием, т.е. угнетающие освобождение (и, возможно, биосинтез) гипофизар-ных гормонов, стали называть ингибирующими факторами, или статинами. Таким образом, гормонам гипоталамуса принадлежит ключевая роль в физиологической системе гормональной регуляции многосторонних биологических функций отдельных органов, тканей и целостного организма.

К настоящему времени в гипоталамусе открыто 7 стимуляторов (либерины) и 3 ингибитора (статины) секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин (табл. 8.1). В чистом виде выделено 5 гормонов, для которых установлена первичная структура, подтвержденная химическим синтезом.

Большие трудности при получении гормонов гипоталамуса в чистом виде объясняются чрезвычайно низким содержанием их в исходной ткани. Так, для выделения всего 1 мг тиролиберина потребовалось переработать 7 т гипоталамусов, полученных от 5 млн овец.

Следует отметить, что не все гормоны гипоталамуса, по-видимому, строго специфичны в отношении одного какого-либо гипофизарного гормона. В частности, для тиролиберина показана способность освобождать, помимо тиротропина, также пролактин, а для люлиберина, помимо лютеи-низирующего гормона,– также фолликулостимулирующий гормон.

1 Гипоталамические гормоны не имеют твердо установленных наименований. Рекомендуется в первой части названия гормона гипофиза добавлять окончание «либерин»; например, «тиролиберин» означает гормон гипоталамуса, стимулирующий освобождение (и, возможно, синтез) тиротропина — соответствующего гормона гипофиза. Аналогичным образом образуют названия факторов гипоталамуса, ингибирующих освобождение (и, возможно, синтез) троп-ных гормонов гипофиза,- добавляют окончание «статин». Например, «соматостатин» означает гипоталамический пептид, ингибирующий освобождение (или синтез) гормона роста гипофиза — соматотропина.

Установлено, что по химическому строению все гормоны гипоталамуса являются низкомолекулярными пептидами, так называемыми олигопепти-дами необычного строения, хотя точный аминокислотный состав и первичная структура выяснены не для всех. Приводим полученные к настоящему времени данные о химической природе шести из известных 10 гормонов гипоталамуса.

Тиролиберин представлен трипептидом, состоящим из пироглутаминовой (циклической) кислоты, гистидина и пролинамида, соединенных пептидными связями. В отличие от классических пептидов он не содержит свободных NH2— и СООН-групп у N- и С-концевых аминокислот.

2. Гонадолиберин является декапептидом, состоящим из 10 аминокислот в последовательности:

Концевая С-аминокислота представлена глицинамидом.

3. Соматостатин является циклическим тетрадекапептидом (состоит из 14 аминокислотных остатков) :

Отличается этот гормон от двух предыдущих, помимо циклической структуры, тем, что не содержит на N-конце пироглутаминовой кислоты: дисульфидная связь образуется между двумя остатками цистеина в 3-м и 14-м положениях. Следует отметить, что синтетический линейный аналог соматостатина также наделен аналогичной биологической активностью, что свидетельствует о несущественности дисульфидного мостика природного гормона. Помимо гипоталамуса, соматостатин продуцируется нейронами центральной и периферической нервных систем, а также синтезируется в S-клетках панкреатических островков (островков Лангерганса) в поджелудочной железе и клетках кишечника. Он оказывает широкий спектр биологического действия; в частности, показано ингибирующее действие на синтез гормона роста в аденогипофизе, а также прямое тормозящее действие его на биосинтез инсулина и глюкагона в β- и α-клетках островков Лангерганса.

4. Соматолиберин недавно выделен из природных источников. Он представлен 44 аминокислотными остатками с полностью раскрытой последовательностью. Биологической активностью соматолиберина наделен, кроме того, химически синтезированный декапептид:

5. Меланолиберин, химическая структура которого аналогична структуре открытого кольца гормона окситоцина (без трипептидной боковой цепи), имеет следующее строение:

6. Меланостатин (меланотропинингибирующий фактор) представлен или трипептидом: Пиро-Глу–Лей–Гли-NН2, или пентапептидом со следующей последовательностью:

Необходимо отметить, что меланолиберин оказывает стимулирующее действие, а меланостатин, напротив, ингибирующее действие на синтез и секрецию меланотропина в передней доле гипофиза.

Помимо перечисленных гипоталамических гормонов, интенсивно изучалась химическая природа другого гормона – кортиколиберина . Активные препараты его были выделены как из ткани гипоталамуса, так и из задней доли гипофиза; существует мнение, что последняя может служить депо гормона для вазопрессина и окситоцина. Недавно выделен состоящий из 41 аминокислоты с выясненной последовательностью кортиколиберин из гипоталамуса овцы.

Местом синтеза гипоталамических гормонов, вероятнее всего, являются нервные окончания – синаптосомы гипоталамуса, поскольку именно там отмечена наибольшая концентрация гормонов и биогенных аминов. Последние рассматриваются наряду с гормонами периферических желез внутренней секреции, действующих по принципу обратной связи, в качестве основных регуляторов секреции и синтеза гормонов гипоталамуса. Механизм биосинтеза тиролиберина, осуществляющегося, скорее всего, нерибо-собальным путем, включает участие SH-содержащей синтетазы или комплекса ферментов, катализирующих циклизацию глутаминовой кислоты в пироглутаминовую, образование пептидной связи и амидирование проли-на в присутствии глутамина. Существование подобного механизма биосинтеза с участием соответствующих синтетаз допускается также в отношении гонадолиберина и соматолиберина.

Пути инактивации гормонов гипоталамуса изучены недостаточно. Период полураспада тиролиберина в крови крысы составляет 4 мин. Инактивация наступает как при разрыве пептидной связи (под действием экзо-и эндопептидаз сыворотки крови крысы и человека), так и при отщеплении амидной группы в молекуле пролинамида. В гипоталамусе человека и ряда животных открыт специфический фермент пироглутамилпептидаза, которая катализирует отщепление от тиролиберина или гонадолиберина молекулы пироглутаминовой кислоты.

Гипоталамические гормоны непосредственно влияют на секрецию (точнее, освобождение) «готовых» гормонов и биосинтез этих гормонов de novo. Доказано, что цАМФ участвует в передаче гормонального сигнала. Показано существование в плазматических мембранах клеток гипофиза специфических аденогипофизарных рецепторов, с которыми связываются гормоны гипоталамуса, после чего через систему аденилатциклазы и мембранных комплексов Са 2+ –АТФ и Mg 2+ –АТФ освобождаются ионы Са 2+ и цАМФ; последний действует как на освобождение, так и на синтез соответствующего гормона гипофиза путем активирования протеинкиназы (см. далее).

Для выяснения механизма действия рилизинг-факторов, включая их взаимодействие с соответствующими рецепторами, большую роль сыграли структурные аналоги тиролиберина и гонадолиберина. Некоторые из этих аналогов обладают даже более высокой гормональной активностью и пролонгированным действием, чем природные гормоны гипоталамуса. Однако предстоит еще большая работа по выяснению химического строения уже открытых рилизинг-факторов и расшифровке молекулярных механизмов их действия.

источник

Гормоны гипоталамуса и гипофиза

Гормоны гипоталамуса вырабатываются в пульсирующем режиме. Эти гормоны регулируют выработку гормонов гипофиза. Вещества, влияющие на выработку гормонов гипофиза, называются релизинг-факторами (от англ. release – освобождать). Релизинг-факторы делятся на либерины (стимулируют выработку гормонов гипофиза) и статины (угнетают высвобождение и, возможно, биосинтез) гипофизарных гормонов В гипоталамусе выделяют 7 либеринов (кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин, пролактолиберин, меланолиберин) и 3 статина (соматостатин, пролактостатин, меланостатин). По химическому строению все гормоны гипоталамуса являются низкомолекулярными пептидами. Нейропептиды гипоталамуса активируют высвобождение тропных гормонов гипофиза по аденилатциклазному механизму или через изменение концентрации ионов Са 2+ .

Гормоны гипофиза. В зависимости от места синтеза различают гормоны передней, задней и промежуточной (у человека) долей гипофиза.

Гормоны передней доли гипофиза

1. Кортикотропин (АКТГ) – полипептид, состоящий из 39 аминокислот. Регулирует рост и функцию коры надпочечников. Для проявления биологической активности необходимы 24 N-концевые аминокислоты.

АКТГ 1) повышает синтез и секрецию стероидов надпочечников; 2) оказывает жиромобилизующий эффект и 3) обладает меланоцитостимулирующей активностью. Механизм действия – аденилатциклазный.

2. Соматотропин (СТГ, ГР), см. лекцию 31. СТГ состоит из 191 аминокислоты. Обладает видовой специфичностью. Обеспечивает рост по периода полового созревания (деление клеток, рост костей в длину, задержка кальция, увеличение массы внутренних органов). Оказывает прямое и опосредованное действие. Прямое действие СТГ связано с увеличением внутриклеточной концентрации цАМФ в тканях. Опосредованное действие обусловлено образованием в печени инсулиноподобных факторов (IGF-1 и IGF-2), которые обеспечивают анаболический эффект. При недостатке СТГ у детей (гипофизарная карликовость) отмечается нарушение развития тела и сохранение нормальных пропорций и психического развития. При гиперфункции в детском возрасте развивается гигантизм, у взрослых – акромегалия (увеличение отдельных участков тела).

3. Тиротропин (ТТГ). ТТГ представляет по химическому строению сложный белок – гликопротеин. Состоит из 2-х субъединиц — a и b. b-субъединица определяет биологическую активность, a необходима для проявления биологической активности b-субъединицы. Действует по аденилатциклазному механизму. Орган-мишень – щитовидная железа. ТТГ контролирует развитие и функцию щитовидной железы и регулирует биосинтез и секрецию в кровь тироидных гормонов.

4. Фоллитропин (ФСГ) и лютропин (ЛТГ). Являются сложными белками-гликопротеинами, состоящими из a и b-субъединиц. Фоллитропин вызывает созревание фолликулов в яичниках у женщин и сперматогенез у мужчин. Лютропин стимулирует секрецию эстрогенов и прогестерона, разрыв фолликулов у женщин, а также секрецию тестостерона и развитие интерстициальной ткани у мужчин. Оба гормона являются сложными белками-гликопротеинами, состоящими из a и b-субъединиц. Каждая из них в отдельности лишена биологической активности. Специфичность действия гормонов зависит от β-субъединиц (они отличаются), а α-субъединицы имеют сходное строение.

5. Пролактин. Состоит из 199 аминокислотных остатков. Является одним из самых древних гормонов. Основное действие – стимуляция развития молочных желез и лактации. Кроме того, стимулирует рост внутренних органов, секрецию желтого тела, оказывает гипергликемическое действие. Концентрация пролактина повышается в крови у женщин перед родами.

6. α- и β-липотропные гормоны. Биологическое действие – мобилизация жира из депо. Кроме того, отмечают кортикотропную, меланоцитостимулирующую и гипокальциемическую активности. Механизм действия – увеличение концентрации цАМФ.

В клетках переднего сегмента задней доли гипофиза (у животных – средней доли гипофиза) образуются a— и b-меланоцитостимулирующие гормоны. a-МСГ состоит из 13 аминокислот, b- из 18-22 аминокислотных остатков. Биологическая роль – стимуляция синтеза меланина и увеличение количества пигментных клеток (меланоцитов) в коже, радужке, пигментном эпителии сетчатки глаза. В жировой ткани оказывает жиромобилизующее действие.

Гормоны задней доли гипофиза (окситоцин и вазопрессин)

Относятся к гормонам задней доли гипофиза условно, поскольку синтезируются в особых нейронах гипоталамуса, откуда переносятся в заднюю долю гипофиза и поступают непосредственно в кровь. Для транспорта синтезированных гормонов в секреторные гранулы гипоталамуса и в гипофиз существуют специальные белки – нейрофизины I и II. По химическому строению представляют собой пептиды, состоящие из 9 аминокислот. Период полужизни 2-4 мин.

1. Вазопрессин (антидиуретический гормон),см. лекцию 32. Орган-мишень – клетки дистальных канальцев почек, где вазопрессин связывается с клеточными рецепторами и увеличивает концентрацию цАМФ, что приводит к активации протеинкиназ и фосфорилированию мембранных белков почечных канальцев. Конечный эффект – увеличение реабсорбции воды. Вазопрессин стимулирует сокращение гладкой мускулатуры сосудов, оказывая сильное вазопрессорное действие.

При недостаточности секреции гормона развивается несахарный диабет – заболевание, характеризующееся выделением чрезвычайно больших количеств жидкости.

2. Окситоцин. Стимулирует сокращение гладких мышц матки и сокращение мышечных волокон, расположенных вокруг альвеол молочных желез, вызывающее секрецию молока. Усиливает синтез белка в молочной железе, оказывает инсулиноподобное действие на жировую ткань, усиливает потребление глюкозы и синтез триацилглицеролов. Механизм действия – увеличение внутриклеточной концентрации цГМФ и ионов кальция.

Дата добавления: 2016-11-12 ; просмотров: 914 | Нарушение авторских прав

источник

Гормоны гипофиза

В передней доле гипофиза (аденогипофизе) синтезируются тропные гормоны, стимулирующие синтез и секрецию гормонов периферических эндокринных желёз. По химическому строению гормоны гипофиза являются пептидами или гликопротеинами.

Кортикотропин (АКТГ, адренокортикотропный гормон). Полипептид из 39 аминокислотных остатков. Стимулирует синтез и секрецию гормонов коры надпочечников путем активации превращения холестерола в прегненолон. Мишенями действия АКТГ являются также клетки жировой ткани (активация липолиза) и клетки нейрогипофиза (активация образования меланотропинов).

Тиреотропин (ТТГ, тиреотропный гормон). Гликопротеид, состоящий из двух субъединиц.

Стимулирует синтез и секрецию йодтиронинов (Т 3 и Т 4) в щитовидной железе:

1. ускоряет поглощение йода из крови;

2. увеличивает включение йода в тиреоглобулин;

3. ускоряет протеолиз тиреоглобулина, т. е. высвобождение Т 3 и Т 4 и их секрецию.

Пролактин (лактотропный гормон).

Белок, состоящий из 199 аминокислотных остатков. Стимулирует развитие молочных желёз и лактацию, стимулирует секрецию желтого тела и материнский инстинкт. В жировой ткани пролактин активирует липогенез (синтез триацилглицеролов).

Фоллитропин (фоликулостимулирующий гормон) и лютропин (лютеинизирующий гормон)

Образуют группу гонадотропных гормонов. Оба гормона являются гликопротеидами, состоят из двух субъединиц. Фоллитропин регулирует созревание фолликулов у женщин и сперматогенез у мужчин. Лютропин стимулирует секрецию эстрогенов и прогестерона, созревание фолликула, овуляцию и образование желтого тела у женщин; стимулирует образование тестостерона и рост интерстициальных клеток в семенниках у мужчин.

Соматотропин (СТГ, соматотропный гормон) – гормон роста.

Пептид, состоящий из 191 аминокислотного остатка. Единственный гормон, обладающий видовой специфичностью.

Рецепторы гормона роста находятся в плазматической мембране клеток печени, жировой ткани, скелетных мышцах, хрящевой ткани, мозге, легких, поджелудочной железе, кишечнике, сердце, почках.

Основное действие соматотропина – ростстимулирующее.

1. Регуляция обмена белков и процессов, связанных с ростом и развитием организма:

• стимулирование синтеза белка в костях, хрящах, мышцах и других внутренних органах;

• усиление транспорта аминокислот в клетки мышц;

• увеличение общего количества РНК, ДНК и общего количества клеток;

• увеличение ширины и толщины костей;

• ускорение роста соединительной ткани, мышц, внутренних органов.

2. Регуляция обмена липидов:

• усиление липолиза в жировой ткани;

• увеличение концентрации жирных кислот в крови;

• активация ?-окисления в клетках (выделяющаяся энергия используется на анаболические процессы);

• увеличение содержания кетоновых тел в крови (при недостаточности инсулина).

3. Регуляция обмена углеводов:

• увеличение содержания гликогена в мышцах;

• активация глюконеогенеза в печени и повышение уровня глюкозы в крови (диабетогенный эффект).

Под влиянием различных факторов (стресс, физические упражнения, голодание, белковая пища) уровень гормона роста может возрастать даже у нерастущих взрослых людей.

Гиперсекреция соматотропина (при опухолях клеток гипофиза):

1. у детей и подростков – гигантизм – пропорциональное увеличение костей, мягких тканей и органов, высокий рост;

2. у взрослых – акромегалия – диспропорциональное увеличение размеров лица, черепа, кистей рук, стоп, увеличение размеров внутренних органов;

3. соматотропный диабет – в крови повышается концентрация глюкозы (гипергликемия).

Гипосекреция соматотропина (при врожденном недоразвитии гипофиза) – нанизм или карликовость – пропорциональное недоразвитие всего тела, низкий рост, отклонений в развитии психической деятельности не наблюдается.

?-липотропин содержит 93 аминокислотных остатка. Он является предшественником природных опиатов эндофинов. ?-липотропин оказывает липолитическое действие.

В промежуточной доле гипофиза синтезируется меланоцитстимулирующий гормон. Этот гормон стимулирует биосинтез кожного пигмента меланина.

В задней доле гипофиза накапливаются в гранулах и секретируются в кровь вазопрессин и окситоцин. Это цикличесие пептиды, состоящие из девяти аминокислотных остатков.

Вазопрессин (АДГ, антидиуретический гормон) Синтезируется в супраоптическом ядре гипоталамуса. Вазопрессин контролирует осмотическое давление плазмы крови и водный баланс организма человека. Основное биологическое действие гормона заключается в повышении реабсорбции воды в дистальных канальцах и собирательных трубочках почек (антидиуретическое действие). Кроме этого вазопрессин стимулирует сокращение гладких мышечных волокон сосудов и сужение просвета сосудов, что сопровождается повышением артериального давления. При недостатке вазопрессина развивается несахарный диабет – заболевание, характеризующееся выделением 4–10 л мочи низкой плотности в сутки (полиурия) и жаждой. В отличие от сахарного диабета отсутствует глюкозурия.

Окситоцин синтезируется в паравентрикулярном ядре гипоталамуса.

Биологическое действие гормона:

1. стимулирует сокращение гладких мышц матки (используется для стимуляции родов);

2. усиливает синтез белка в молочной железе и секрецию молока (за счет сокращения мышечных волокон вокруг альвеол молочных желёз).

источник