Биологически активные вещества витамины гормоны факторы роста

Щитовидная железа

Тироксин и трийодтиронин поступают в кровь и транспортируются тироксинсвязывающими белками (альбуминами и преальбуминами). Свободного гормона не более 0,3%. Разрушаются гормоны в печени в результате образования конъюгатов с глюкуроновой и серной кислотами, при этом высвобождается йод. Эффекты реализуются по мембранно-внутриклеточному и цитозольному типам. Калоригенный эффект проявляется повышением потребления кислорода и повышенным образованием тепла (это обусловлено разобщением клеточного дыхания и окислительного фосфорилирования) кроме того активируется АТФ — зависимое выкачивание натрия из клеток, на которое тратится 25-40% всей энергии АТФ. Еще один важный эффект этих гормонов — стимуляции отдельных этапов синтеза белка.

Паратгормон — одиночная полипептидная цепь. Скорость секреции его зависит от концентрации ионов кальция в сыворотке крови: повышение концентрации снижает секрецию. Действует по мембранно-внутриклеточному механизму.

Кальцитонин — одоцепочечный полипептид (32 АК). Повышение концентраци ионов кальция активирует секркцию гормона.. Действует изменяя активность кальциевого насоса (через калцийзависимую АТФ-азу). Действие этих двух гормонов тесно связано с витамином Д.

В мозговом слое продуцируются два катехоламина — адреналин и норадреналин. Их образование включает следующие этапы: тирозин (АК) — диоксифенилаланин (ДОФА) — диоксифенилэтиламин (дофамин) — норадреналин — адреналин . Эффекты реализуются по мембранно-внутриклеточному типу. В печени и мышцах активируют гликогенолиз (распад гликогена) это приводит к увеличению концентрации глюкозы и накоплению лактата. Стимулируют липолиз, в следствии чего в кровоток высвобождаются жирные кислоты.

Корковый слой продуцирует около 30 стероидных гормонов, содержащих 19 или 21 атом углерода. Различают три группы стероидов: глюкокортикоиды — преимущественно влияют на углеводный обмен, минералокортикоиды — на минерально-водный и половые гормоны (андрогены и эстрогены). Кортикостероиды синтезируются на основе холестерола . Важный этап этого процесса — гидроксилирование — катализирует цх Р-450 , а кофермент — НАДФН . Транспортируются гормоны специфическим a -глобулином (транспортином). Эффект реализуется по цитозольному типу, через изменение скорости продукции специфических белков в клетках-мишенях. В результате в печени увеличивается гликогенез (синтез гликогена) и глюконеогенез (образование глюкозы) из АК в связи с повышением активности аминотрансфераз, пируваткарбоксилазы, гликогенсинтетазы и глюкозо-6-фосфотазы.

Интенсивный синтез белков в печени сопровождается торможением синтеза белков в мышцах, активацией расщепления белков в лимфоидной ткани. В них снижается уровень свободных АК и теряется белковый азот, увеличивается синтез мочевины и развивается отрицательный азотистый баланс. При длительных воздействиях кортикостероидов развивается атрофия мышц. Подавляя белковый синтез в лимфоидной ткани, кортекостероиды препятствуют образованию антител (которые являются белками), участвующих в формировании аллергической ответной реакции организма. Т.е. Кортикостероиды таким путем снижают интенсивность аллергических реакций. Кроме того эти гормоны активируют синтез липидов.

Альдостерон — минералокортикоид. Это липофильное соединение, которое проникает в цитоплазму клеток (цитозотльный тип) и активирует транскирипцию генов, содержащих информацию о структуре натрий-транспортных белков эпителия канальцев почек. Синтез в клетках таких белков приводит к усиленному переносу ионов натрия из первичной мочи обратно в кровь.

Поджелудочная железа

Инсулин — глобулярный белок, синтезируется в виде предшественника, затем активируется. Мишенями инсулина (т.е. где есть рецепторы) являются мышечная, соединительная и жировая ткани. Мало рецепторов содержат гепатоциты и совсем нет у нервных клеток. Эффект реализуется по мембранному типу. Кроме того существует еще и мембранно-внутриклеточные эффекты при участии цГМФ и цАМФ. В совокупности инсулин активирует: транспорт в клетку глюкозы, АК, ионов калия и кальция, превращение глюкозы по основному пути, синтез гликогена и триацилглицеридов. Инсулин тормозит: расщепление гликогена (гликогенолиз) и образование глюкозы (глюконеогенез), расщепление жиров, образование кетоновых тел и синтез холестерола, протеолиз, обмен АК и образование мочевины.

Глюкагон — образуется в виде предшественника. Действует по мембранно-внутриклеточному типу. Мишень — гепатоциты, миоциты и жировая ткань. Гормон повышает концентрацию глюкозы в крови за счет расщепления гликогена, угнетения синтеза белка, активации распада белка и липидов. Т.е. глюкагон — антагонист инсулина.

Эстрогены — женские половые гормоны, продуцируются яичниками и в ограниченном количестве надпочечниками. Стероидной природы, эффекты реализуются по цитозольному механизму.

Гестогены — гормоны желтого тела. Важнейший — прогестерон , который синтезируется также плацентой и надпочечниками. Механизм действия — цитозольный, мишени: эндометрий, плацента, молочные железы.

Релаксин — гормон желтого тела полипептидной природы, состоит из двух цепей, связанных полипептидным мостиком.

Андрогены — мужские половые гормоны. Тестостерон и дигидротестостерон. Ткани-мишени — простата, мышцы. Эффект реализуется по цитозольному типу. Выраженно активируют синтез белка в миоцитах. На основе этих веществ синтезированы анаболические стероиды. Отношение анаболической активности к андрогенной у лучших из этих соединений выше чем у тестостерона в 5-12 раз.

Эсторгены и андрогены являются по отношению к рецепторам друг друга антигормонами (т.е. по аналогии с ферментами — конкурентными ингибироами). Поэтому в онкологической практике применяют для лечения опухолей половой сферы у самок — тестостерон, у самцов — эстрадиол.

Витамины

К этой группе веществ относятся низкомолекулярные органические соединения, которые не выполняют пластической функции и не синтезируются в организме вообще или синтезируются в ограниченном количестве микрофлорой кишечника. Эти вещества проявляют активность в малых количествах, но с ними связаны многие метаболические процессы, которые протекают при участии ферментов. Существуют также витаминоподобные вещества, которые не отвечают всем вышеперечисленным признакам.

Номенклатура основана на использовании заглавных букв латинского алфавита и по систематике ИЮПАК используют названия, отражающие химическую природу и функцию витаминов. Классифицировать витамины по химической природе невозможно, т. к. большинство из них относится к разным классам химических соединений. Но по отношению к растворителям их разделяют на водо- и жирорастворимые. По физиологическому действию на организм различают:

1. повышающие общую сопротивляемость организма (А, С, В1, В2, РР)

2. антигеморрагические (С, Р, К)

3. антианемические (С, В12, фолиевая кислота)

5. регуляторы зрения (А, В2, С)

Обеспеченность организма витаминами выражается в трех формах:

1. Авитаминоз — полный дефицит какого-либо витамина. Основная причина — нарушение всасывания его в кишечнике, воспаления и дистрофические изменения печени, дисбактериозы,

2. Гиповитаминоз — частичный дефицит витамина, полигиповитаминоз — нескольких витаминов,

3. Гипервитаминоз — избыток витамина (чаще А, Д, С).

Основная биохимическая роль некоторых витаминов

Витамин В1, тиамин . В организме превращается в кофермент ТДФ. Коферментные функции: в составе дегидрогеназ обеспечивает окислительное декарбоксилирование пировиноградной кислоты и альфа-кетоглутаровой кислоты.

Витамин В2, рибофлавин . Коферментная форма: ФМН и ФАД . Участвует в транспорте протонов и электронов водорода от НАД-зависимых дегидрогеназ (где кофермент НАД) на кофермент Q , участвует в дегидрировании аминокислот, кето- и оксикислот.

Витамин В3 , пантотеновая кислота . Коферментная форма — КоА . Участвует в дегидрировании и дегидратации ацильных остатков в составе ацил-КоА (при b -окислении ЖК).

Витамин В5 ( PP ), никотиновая кислота . Коферментная форма: НАД и НАДФ . Функционирует в составе дегидрогеназ в процессе транспорта водорода от окисляемых субстратов на второе звено дыхательной цепи, на флавопротеид. В отличие от многих витаминов синтезируется в организме из АК триптофана.

Витамин В6, пиридоксаль . Поступает в организм в виде пиридоксина , который фосфорилируется в печени, а затем окисляется до пиридоксальфосфата . Это коферментная форма, которая участвует в реакциях переаминирования и декрбоксилирования аминокислот, обезвреживании биогенных аминов, биосинтезе сфинголипидов и гликогенолизе.

Витамин Н, биотин . Синтезируется микрофлорой кишечника. Биотин является коферментом карбоксилаз.

Витамин Вс , фолиевая кислота . Участвует в синтезе пуринов, пиримидинов, глицина, метионина.

Витамин В12 , цианкобаламин. Участвует в реакциях синтеза метионина, в превращении метилмалонил-КоА (продукт окисления ЖК с нечетным числом углеродных атомов) в сукцинил КоА , который поступает в ЦТК, в образовании коферментных форм фолацина и опосредовано в синтезе ДНК.

Витамин С , аскорбиновая кислота. Основная функция — донор водорода в окислительно-восстановительных реакциях (при этом превращается в дигидроаскорбиновую кислоту). Участвует в превращениях ароматических аминокислот:

— гидроксилировании триптофана в положении 5 (синтез серотонина)

— гидроксилировании ДОФА (образование норадреналина)

— гидроксилировании стероидов (синтез кортекостероидов)

— гидроксилировании остатков пролина и лизина в проколлагене (образование коллагена).

Кроме того, в кишечнике обеспечивает восстановление трехвалентного железа в двухвалентное для того, чтобы оно могло всосаться.

Витамин А , ретинол. Две формы: ретинол — спирт, ретинал — альдегид. В тканях витамин А превращается в сложные эфиры: ретинил-пальминат, ретинилацетат, ретинилфосфат. Предшественник — каротин известен в альфа, бета и гамма формах. Наиболее активен бета-каротин, при расщеплении одной его молекулы образуется две молекулы ретиналя. Компонентом светочувствительных пигментов сетчатки глаза является 11-цис-ретиналь. В палочках содержится зрительный пигмент родопсин, в колбочках — йодопсин. Оба белки с 11-цис-ретиналем в качестве простетической группы. Кванты света вызывают изомеризацию 11-цис-ретиналя в трансретиналь, после чего происходит распад пигмента на свободную белковую часть — опсин и трансретиналь. Родопсин и йодопсин встроены в мембрану светочувствительных клеток сетчатки, поэтому фотоизомеризация ретиналя приводит к местной деполяризации мембраны. В результате возникает электрический импульс, который распространяется по нервному волокну. Восстановление родопсина и йодопсина происходит при участии ретиналь-изомеразы.

Витамин Д , кальциферол. Поступает в организм в виде предшественников, основной из которых — 7-дегидрохолестерол, который после воздействия УФ-лучей в коже превращяется в холекальциферол (Д3), предшественник — эргостерин по такому же механизму превращается в эргокальциферол (Д2), а Д1 — это их смесь. В результате ряда химических модификаций витамин Д превращается в 1,25 дигидрооксихолекальциферол. Это вещество в клетках слизистой оболочки кишечника участвует в превращении кальцийсвязывающего белка из предшественника в активную форму. Он ускоряет всасывание ионов кальция из просвета кишечника.

Витамин Е , токоферол . Существует альфа, бета, гамма, дельта формы. Основная функция — регуляция интенсивности свободнорадикального окисления. Это проявляется ограничением скорости процессов перекисного окисления ненасыщенных жирных кислот в составе липидов клеточных мембран. Является синергистом селена (взаимно улучшают действие). Селен — кофактор фермента глутатионпероксидазы, которая инактивирует гидроперекиси липидов мембран, а токоферол тормозит образование таких гидроперекисей.

К ним относятся соединения, которые не являются обязательными компонентами пищи (т.н. нутриенты) и их дефицит не сопровождается характерными, четко выраженными симптомами.

Холин . Всасываясь в стенки кишечника там фосфорилируется, образуя фофсохолин. Принимает участие в синтезе фосфатидов и ацелилхолина, а также он является донором метильной группы в реакциях переметилирования (трансферазы).

Липоевая кислота . Выполняет роль кофермента окислительного декарбоксилирования пировиноградной и альфа-кетоглутаровой кислот. Является сильным восстановителем предотвращает быстрое окисление витамин Е и С, т.е. поддерживает и их высокий уровень.

Оротовая кислота . Исходный продукт для синтеза УТФ (компонента молекулы нуклеиновой кислоты). В виде оротата калия применяется при нарушениях белкового обмена.

Пангамовая кислота . Участвует в процессах переаминирования как донор метильной группы, активирует окислительно-восстановительные процессы, способствует накоплению макроэргических соединений, обезвреживанию токсинов.

Убихинон , коэнзим Q . Функция — транспорт водорода через липидный слой мембран.

1. Бышевский А. Ш., Терсенов О. А. Биохимия для врача // Екатеринбург: Уральский рабочий, 1994, 384 с.;

2. Пустовалова Л.М. Практикум по биохимии // Ростов-на Дону: Феникс, 1999, 540 с.

© И н с т и т у т Ф и з и к и
им. Л.В.Киренского 1998-2007

[an error occurred while processing this directive]

источник

Роль витаминов, гомонов и факторов роста в жизнедеятельности организмов

Рибосомная РНК обеспечивает структурную функцию. Ее молекулы вместе с молекулами рибосомных белков обеспечивают определенное про­странственное расположение и-РНК и т-РНК на рибосоме. Процесс синтеза белка из аминокислот на матрице (форме) и-РНК называется трансляцией.

Информационная РНК строится по принципу комплементарности на одной из цепей ДНК в ядре клетки, снимая с нее тем самым информацию, которая необходима для построения рибосомой определенного с заданны­ми свойствами белка. Информационная РНК не только снимает информа­цию с молекулы ДНК, но и несет эту информацию в рибосому, благодаря способности покидать пределы ядра. Процесс построения и-РНК на молекуле ДНК называется транскрипцией.

Для построения белка недостаточно иметь только информацию. Белок строится в рибосоме из аминокислот, которые необходимо транспортиро­вать сюда из цитоплазмы, где они находятся в свободном состоянии. Эту функцию выполняют молекулы транспортной РНК. Они невелики по раз­меру и имеют постоянную вторичную структуру, которая напоминает лист клевера.

Существует 20 видов транспортных РНК, так как каждый из них может переносить только одну из 20 видов аминокислот, используемых клеткой для синтеза белка.

Важнейшей биологической функцией нуклеиновых кислот является их участие в биосинтезе белка, лежащего в основе механизмов нормально­го роста и развития организма, они также хранят и передают наследствен­ную информацию.

Аденозинтрифосфорная кислота (АТФ)

Аденозинтрифосфорная кислота — вещество, которое используется клеткой как универсальный биологический аккумулятор энергии. Для того чтобы понять, как АТФ удается выполнять столь важную для жизнедея­тельности клетки функцию, необходимо познакомиться с химическим стро­ением ее молекулы. Молекула АТФ представляет собой уже знакомую вам структуру, которая называется нуклеотидом. Он состоит из азотистого ос­нования аденина, углевода рибозы и трех остатков фосфорной кислоты:

Две химические связи в молекуле АТФ (О

Р) называются макроэргическими связями, их отличительная особенность состоит в том, что они заключают в себе гораздо больше энергии, чем какие бы то ни было дру­гие химические связи. Разрушаются макроэргические связи при взаимодей­ствии АТФ с водой (такие реакции называются реакциями гидролиза). Когда в результате гидролиза от молекулы АТФ отщепляется одна молекула фосфорной кислоты, она превращается в молекулу АДФ (аденозиндифосфорную кислоту) (рис. 4), а при дальнейшем гидролизе молекула АДФ превращается в молекулу АМФ (аденозинмонофосфорную кислоту). В первом случае, при разрыве одной макроэргической связи выделяется 42 кДж энергии, во втором – еще 42 кДж энергии.

Таким образом, в результате расщепления молекулы АТФ выделяется огромное количество энергии (84 кДж), которая расходуется клеткой на процессы жизнедеятельности. Накапливается запас молекул АТФ в особой органелле клетки, которая называется митохондрией.

Рис. 4. Схема строения АТФ и превращения ее в АДФ

1. В тетради назовите сходства и отличия в строении ДНК и РНК.

2. В тетради дайте определение понятиям: комплементарность, репликация, траскрипция, трансляция, ген.

Обозначьте знаком «+» все правильные ответы:

3. В состав нуклеотида входят:

 А) пентоза;  Б) остаток фосфорной кислоты;

 В) гексоза;  Г) азотистое основание;

 Д) остаток сульфатной кислоты

4. Мономеры нуклеиновых кислот:

 А) моносахариды;  Б) нуклеозиды;

 В) аминокислоты;  Г) нуклеотиды;

5. В состав нуклеотидов молекулы ДНК входят:

 А) рибоза;  Б) дезоксирибоза;  В) тимин;

6. В состав нуклеотидов РНК входят:

 А) рибоза;  Б) дезоксирибоза;  В) тимин;

7. Соседние нуклеотиды в полинуклеотидной цепи соединены связями:

 А) водородными;  Б) ковалентными;

 В) гидрофильно-гидрофобными взаимодействиями;

8. Определите соответствие между молекулами и их функциями:

 А) АТФ 1) является матрицей для синтеза белка

 Б) р-РНК 2) транспортирует к месту синтеза белка

 В) и-РНК 3) входит в состав рибосом

 Г) т-РНК 4) является универсальным перенос-

5) является матрицей для синтеза и-РНК

9. По правилу комплементарности определите последовательность нуклеотидов второй цепочки ДНК, если последовательность первой цепочки следующая:

10. Определите количество аминокислот, которые входят в состав белка, который кодируется последовательностью из 1035 нуклеотидов:

 А) 1035;  Б) 173;  В) 154;  Г) 345

Биологически активные вещества являются особой группой органических соединений. Они ре­гулируют процессы обмена веществ, роста и развития организмов, служат для защиты или влияют на особей своего или других видов. Одна из групп био­логически активных веществ — это витамины.

Витамины — это биологически ак­тивные низкомолекулярные органические веще­ства разнообразного строения, необходимые для жизнедеятельности всех живых организмов. Они принимают участие в обмене веществ и превраще­нии энергии, преимущественно как компоненты сложных ферментов. Суточная потребность челове­ка в витаминах составляет миллиграммы, а некото­рых — даже микрограммы.

Сейчас известно около 50 различных витаминов и витаминоподобных веществ. Они по-разному вли­яют на живые организмы, однако являются жизнен­но необходимыми компонентами сбалансированного питания человека и животных. Основным источни­ком витаминов для человека и животных являются продукты питания преимущественно растительно­го происхождения. Однако некоторые витамины со­держатся только в продуктах животного происхож­дения (например, витамины А и D). Некоторые витамины могут в небольшом количестве синтези­роваться в организме человека и животных из пред­шественников (провитаминов). Например, в коже человека под действием ультрафиолетового солнеч­ного излучения синтезируется витамин D. Витамины в организме человека и животных могут синтезиро­вать абиотические микроорганизмы. Например, в ки­шечнике человека они синтезируют витамины К, В6, В12; витамины группы В образуют микроорганизмы, обитающие в рубце жвачных животных. Однако образованных в организме человека витаминов недостаточно для обеспечения его нормальной жизне­деятельности.

При недостатке в организме витаминов, разви­вается заболевание гиповитаминоз, при полном их отсутствии — авита­миноз, а при избытке — гипервитаминоз. Гипо- и авитаминоз могут воз­никнуть и вследствие нарушения обмена веществ, когда организм не воспринимает некоторые вита­мины.

Традиционно витамины обозначают буквами ла­тинского алфавита А, В, С, D и т.д. Сейчас кроме буквенного обозначения витамины получили и химические названия (например, витамин С называется еще аскорбиновой кислотой).

Витамины в зависимости от того, растворяются они в воде или жирах, делятся на две группы: водорастворимые и жирорастворимые. К водорастворимым относятся витамины групп В, С и другие, а к жирорастворимым — витамины групп A, D, К и витамин Е.

Другой группой биологически активных веществ, играющих важную роль в обеспечении нормальной жизнедеятельности человека и животных, являются гормоны.

Гормоныорганические вещества, способ­ные включаться в цикл биохимических реакций и ре­гулировать обмен веществ и энергии. Они вырабатываются железами внутренней секреции человека, позвоночных и некоторых беспозвоноч­ных животных.

Так же действуют и нейрогормоны, вырабатываемые определенными не­рвными клетками (например, адреналин и норадреналин). Как и гормоны, они поступают в кровь или другие жидкости тела и принимают участие в регу­ляции обмена веществ, деятельности желез внутрен­ней секреции, тонуса неисчерченной мускулатуры, поддержании постоянства внутренней среды орга­низма. Химическая природа гормонов и нейрогормонов может быть разной.

Гормоны могут быть белковой природы (гормон роста, гормоны поджелудочной железы — инсулин и глюкагон и др.). производными аминокислот (гор­мон щитовидной железы — тироксин, гормоны над­почечников — адреналин и норадреналин и др.), липидной природы (половые гормоны и др.).

Характерными особенностями гормонов и нейро- гормонов являются:

1. Высокая биологическая активность.Гормо­ны оказывают влияние на клетки, ткани и органы в незначительных концентрациях.

2. Высокая специфичность.Они влияют только на определенные процессы в определенных тканях и органах. Гормоны и нейрогормоны действуют толь­ко на те клетки (так называемые клетки-мишени), которые имеют особые рецепторы, способные их рас­познавать.

3. Дистанционность действия.Гормоны и ней­рогормоны с током крови могут переноситься на зна­чительные расстояния от места их образования к клеткам-мишеням.

4. Относительно короткое время существова­ния в организме —несколько минут или часов, пос­ле чего определенный гормон или нейрогормон под действием специфического фермента теряет свою активность.

Под контролем гормонов и нейрогормонов происхо­дят все этапы индивидуального развития человека и животных, а также все процессы жизнедеятельно­сти. Они обеспечивают приспособления к измене­ниям условий внешней и внутренней среды орга­низма, регуляцию активности ферментов. Если определенные гормоны вырабатываются в организ­ме в недостаточном количестве или не вырабатыва­ются вообще, наблюдают нарушения развития и обмена веществ разной степени тяжести. Так же отрицательно на организм влияет и чрезмерное образование определенных гормонов. Вы уже знаете, что при недостаточном образовании в организме человека гормона роста развивается карликовость, а при чрезмерном — гигантизм.

К биологически активным веществам, вырабаты­ваемым в организме растений и грибов, относятся фитогормоны и алкалоиды.

У высших растений и грибов обнаруженыфитогормоны. Это биологически активные ве­щества, имеющие разное химическое строение и об­разующиеся в определенных клетках. Как и гормо­ны животных, они способны в малых количествах регулировать и координировать индивидуальное развитие и рост растений.

Фитогормоны влияют практически на все процес­сы развития растений: деление и рост клеток, диф­ференцирование тканей, формирование органов, развитие почек, прорастание семян и т.д. Одни из фитогормонов стимулируют эти процессы, другие, наоборот, угнетают. Фитогормонам, как и гормонам животных, свой­ственна дистанционность действия, однако их специ­фичность выражена слабее: различные фитогормо­ны при определенных условиях и концентрациях проявляют подобное действие.

Алка­лоидыэто органические биологически активные вещества в основном растительного происхожде­ния. Большинство алкалоидов ядовиты для живот­ных и человека, а некоторые из них оказывают наркотическое действие (никотин, морфин и др.). Алка­лоиды обнаружены приблизительно у 2 500 видов по­крытосеменных растений (в основном из семейств Пасленовые, Лилейные, Маковые, Коноплевые). Зна­чение алкалоидов в жизни растений, по-видимому, заключается в защите от поедания их животными. Некоторые алкалоиды в малых дозах используются в медицине в качестве лекарств (атропин, морфин, кофеин и др.); алкалоид хинин применяют при ле­чении малярии: он угнетает жизнедеятельность малярийного плазмодия в эритроцитах человека.

Особая группа биологически активных веществ — антибиотики — био­логически активные вещества, вырабатываемые микроорганизмами. Эти соединения влияют на клетки других микроорганизмов, тормозя их разви­тие или убивая их.

Человек широко использует антибиотики для ле­чения заболеваний, вызванных болезнетворными бактериями или грибами (пенициллин, тетрациклин, нистатин и др.). Некоторые антибиотики тормозят рост злокачественных опухолей, угнетая размноже­ние раковых клеток.

Биологически активные соединения играют важ­ную роль и как факторы влияния на особей своего и других видов. Так, насекомые с помощью различных биологически активных веществ способны привле­кать особей противоположного пола или отпугивать врагов. Растения с помощью биологически активных веществ могут угнетать рост других. Взаимовлияние между различными видами растений человек дол­жен учитывать, высевая их на одном участке или во время планирования севосмен.

1. Определите соответствие между названиями соединений и их характеристиками:

1) витамины а) органические вещества, способные

включаться в цикл биохимических

реакций и регулировать обмен

веществ и энергии. Вырабатываются

железами внутренней секреции чело-

века, позвоночных и некоторых бес-

 2) гормоны б) биологически активные вещества,

которые вырабатываются микроорга-

низмами. Влияют на клетки других

микроорганизмов, тормозя их разви-

 3) алкалоиды в) органические биологически актив-

ные вещества в основном раститель-

ного происхождения. Большинство из

них ядовитые для человека и живот-

4) антибиотики г) биологически активные низкомоле-

кулярные органические вещества раз-

нообразного строения, необходимые

для жизнедеятельности всех живых

организмов. Принимают участие в об-

мене веществ и превращении энергии,

преимущественно как компоненты

д) органические вещества, полимеры,

которые принимают участие в процес-

сах сохранения, передачи и реализа-

ции наследственной информации

При нехватке в организме витаминов развивается заболевание __________________________, при отсут-

ствии — ________________________, при ____________

В отличие от гормонов, факторы роста, как правило, продуцируются _________________________ клетками,

которые расположены ___________________________

Фитогормоны – это _______________________________

4. Обозначьте знаком «+» все правильные ответы:

 А. Витамины А и D содержатся только в продуктах животного происхождения

 Б. Некоторые витамины могут в небольшом количестве синтезироваться в организме человека и животных из предшественников (провитаминов)

 В. Витамины в организме человека и животных могут синтезировать абиотические микроорганизмы

 Г. Образовывающихся в организме человека витаминов достаточно для обеспечения его нормальной жизнедеятельности

 Д. Характерными чертами гормонов и нейрогормонов является их низкая биологическая активность

1. Группа водорастворимых витаминов:

2. Биохимическая природа гормонов:

 в) производные аминокислот;  г) углеводы

3. Для гормонов не характерна:

 Б) высокая биологическая активность;

 Г) значительная длительность существования в

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Для студентов недели бывают четные, нечетные и зачетные. 9610 — | 7509 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Биологически активные вещества витамины гормоны факторы роста

БИОЛОГИЧЕСКИ АКТИВНЫЕ ВЕЩЕСТВА. ВИТАМИНЫ.

Автор работы награжден дипломом победителя III степени

Актуальность: К биологически активным веществам относятся: ферменты, витамины и гормоны . Это жизненно важные и необходимые соединения, каждое из которых выполняет незаменимую и очень важную роль в жизнедеятельности организма.Витамины могут быть отнесены к группе биологически активных соединений , оказывающих свое действие на обмен веществ в ничтожных концентрациях. Это органические соединения различной химической структуры, которые необходимы для нормального функционирования практически всех процессов в организме. Они повышают устойчивость организма к различным экстремальным факторам и инфекционным заболеваниям, способствуют обезвреживанию и выведению токсических веществ и т.д.Цель исследовательской работы: сформулировать рекомендации по правилам приёма витаминов.Задачи: разобрать классификацию витаминов, изучить историю открытия витаминов, раскрыть свойства витаминов, выяснить последствия гипо- и авитаминоза, исследовать правила приёма витаминов.

Витамины ( от лат. YITA — жизнь) — группа органических соединений разнообразной химической природы, необходимых для питания человека и животных и имеющих огромное значение для нормального обмена веществ и жизнедеятельности организма Витамины выполняют в организме те или иные каталитические функции и требуются в ничтожных количествах по сравнению с основными питательными веществами ( белками, жирами, углеводами и минеральными солями.)(см Приложение 1)

Поступая с пищей, витамины усваиваются ( ассимилируются ) организмом, образуя различные производные соединения ( эфирные, амидные, нуклеотидные и др.) которые в свою очередь , могут соединяться с белками. Наряду с ассимиляцией, в организме непрерывно идут процессы разложения (диссимиляции). Витамины, причем продукты распада ( а иногда и мало измененные молекулы витаминов ) выделяются во внешнюю среду.[1]

Болезни, которые возникают вследствие отсутствия в пище тех или иных витаминов, стали называться авитаминозами . Если болезнь возникает вследствие отсутствия нескольких витаминов, ее называют поливитаминозом . Однако типичные по своей клинической картине авитаминозы в настоящее время встречаются довольно редко. Чаще приходится иметь дело с относительным недостатком какого-либо витамина ; такое заболевание называется гиповитаминозом. Если правильно и своевременно поставлен диагноз, то авитаминозы и особенно гиповитаминозы легко излечить введением в организм соответствующих витаминов.(см. Приложение 3)

Чрезмерное введение в организм некоторых витаминов может вызвать заболевание, называемое гипервитаминозом .

В настоящее время многие изменения в обмене веществ при авитаминозе рассматривают как следствие нарушения ферментативных систем.

Многие авитаминозы можно рассматривать как патологические состояния, возникающие на почве выпадения функций тех или других коферментов. Однако в настоящее время механизм возникновения многих авитаминозов ещё не ясен, поэтому пока ещё не представляется возможность трактовать все авитаминозы как состояния, возникающие на почве нарушения функций тех или иных коферментных систем. Значение витаминов для организма человекаВитамины — это такие вещества, которые не поставляют организму энергии, но необходимы в минимальных количествах для поддержания жизни. Они незаменимы, так как не синтезируются или почти не синтезируются клетками человеческого организма. Витамины входят в состав биологических катализаторов — ферментов или гормонов, являющихся мощными регуляторами обменных процессов в организме.(см.Приложение 2) [2]

Витамины делят на две большие группы: витамины растворимые в жирах , и витамины, растворимые в воде . Каждая из этих групп содержит большое количество различных витаминов, которые обычно обозначают буквами «латинского алфавита. Следует обратить внимание, что порядок этих букв не соответствует их обычному расположению в алфавите и не вполне

отвечает исторической последовательности открытия витаминов.

В приводимой классификации витаминов в скобках указаны наиболее характерные биологические свойства данного витамина — его способность предотвращать развития того или иного заболевания. Обычно названию заболевания предшествует приставка «анти», указывающая на то, что данный витамин предупреждает или устраняет это заболевание.

1.ВИТАМИНЫ, РАСВОРИМЫЕ В ЖИРАХ.

Витамин A (антиксерофталический).

Витамин D (антирахитический).

Витамин E (витамин размножения).

Витамин K (антигеморрагический)[3]

2.ВИТАМИНЫ,РАСВОРИМЫЕ В ВОДЕ.

Витамин PP (антипеллагрический).

Пантотен (антидерматитный фактор).

Биотит (витамин Н, фактор роста для грибков,

дрожжей и бактерий, антисеборейный).

Инозит. Парааминобензойная кислота

(фактор роста бактерий и фактор пигментации).

Фолиевая кислота (антианемический витамин, витамин роста для цыплят и бактерий).

Витамин В12 (антианемический витамин).

Витамин В15 (пангамовая кислота).

Витамин Р (витамин проницаемости).

Многие относят также к числу витаминов холин и

непредельные жирные кислоты с двумя и большим числом двойных связей. Все вышеперечисленные растворимые в воде — витамины, за исключением инозита и витаминов С и Р, содержат азот в своей молекуле , и их часто объединяют в один комплекс витаминов группы В.[4]

История открытия витаминов.

Ко второй половине 19 века было выяснено, что пищевая ценность продуктов питания определяется содержанием в них в основном следующих веществ: белков, жиров, углеводов, минеральных солей и воды. Считалось общепризнанным, что если в пищу человека входят в определенных количествах все эти питательные вещества, то она полностью отвечает биологическим потребностям организма. Однако, практический опыт врачей и клинические наблюдения издавна с несомненностью указывали на существование ряда специфических заболеваний, непосредственно связанных с дефектами питания, хотя последнее полностью отвечало указанным выше требованиям. Об этом свидетельствовал также многовековой практический опыт участников длительных путешествий. Настоящим бичом для мореплавателей долгое время была цинга.

История морских и сухопутных путешествий давала также ряд поучительных примеров, указывавших на то, что возникновение цинги может быть предотвращено, а цинготные больные могут быть вылечены, если в их пищу вводить известное количество лимонного сока или отвара хвои. Практический опыт ясно указывал на то, что цинга и некоторые другие болезни связанны с дефектами питания, что даже самая обильная пища сама по себе еще далеко не всегда гарантирует от подобных заболеваний и что для предупреждения и лечения таких заболеваний необходимо вводить в организм какие-то дополнительные вещества, которые содержатся не во всякой пище.[5]

Основоположником учения о витаминах , является русский учёный Николай Иванович Лунин, который ещё в 1880 году провёл весьма показательные опыты, изучая пищевые потребности животного организма. Подопытных животных (мышей) Лунин разделил на две группы. В одной из них мышей кормили обычным молоком, во второй -исскуственным, т. е. изготовленным из очищенных веществ, входящих в состав молока. В результате во второй группе мыши погибли, а в первой оставались вполне здоровыми. На основании этого Лунин заключил, что: “. если невозможно обеспечить жизнь белками, жирами, сахаром, солями и водой, то из этого следует, что в молоке помимо козьего жира, молочного сахара и солей, содержаться ещё и другие вещества, незаменимые для питания.»

Лишь в 1905-1912 годах за рубежом были проведены аналогичные опыты, полностью подтвердившие вывод Лунина.

Доказательство существования витаминов завершилось работой польского учёного Казимира Функа.

В 1911 году он выделил это вещество в кристаллическом виде (оказавшееся, как потом выяснилось, смесью витаминов );оно было довольно устойчивым по отношению к кислотам и выдерживало, например, кипячение с 20%-ным раствором серной кислоты. В щелочных растворах активное начало, напротив, очень быстро разрушалось. По своим химическим свойствам это вещество принадлежало к органическим соединениям и содержало аминогруппу. Функ пришел к заключению, что бери-бери является только одной из болезней, вызываемых отсутствием каких-то особых веществ в пище.

Несмотря на то, что эти особые вещества присутствуют в пище, как подчеркнул ещё Н.И. Лунин, в малых количествах, они являются жизненно необходимыми. Так как первое вещество этой группы жизненно необходимых соединений содержало аминогруппу и обладало некоторыми свойствами аминов, Функ (1912) предложил назвать весь этот класс веществ витаминами (лат. vita — жизнь, vitamin — амин жизни). Впоследствии, однако, оказалось, что многие вещества этого класса не содержат аминогруппы. Тем не менее термин «витамины» настолько прочно вошел в обиход, что менять его не имело уже смысла.

В настоящее время витамины можно охарактеризовать как низкомолекулярные органические соединения, которые, являясь необходимой составной частью пищи, присутствуют в ней в чрезвычайно малых количествах посравнению с основными её компонентами.

Витамины-необходимый элемент пищи для человека и ряда живых организмов потому, что они не ситезируются или некоторые из них синтезируются в недостаточном количестве данным организмом. Витамины-это вещества, обеспечивающее нормальное течение биохимических и физиологических процессов в организме.

Первоисточником всех витаминов являются растения и особенно зеленый лист, где приемущественно образуются витамины, а также провитамины, т.е. вещества, из которых витамины могут образовываться в организме животного. Человек получает витамины или непосредственно из растений, или косвенно — через животные продукты, в которых витамины были накоплены из растительной пищи во время жизни животного. В последнее время все более выясняется важная роль микроорганизмов, синтезирующих некоторые витамины и снабжающих ими животных. Так, взрослые жвачные животные не нуждаются в витаминах группы В потому, что этими витаминами их в достаточной мере снабжает микрофлора пищеварительного тракта.[6]

Независимо от своих свойств витамины характеризуются следующими общебиологическими свойствами:

1. В организме витамины не образуются, их биосинтез осуществляется вне организма человека, т.е. витамины должны поступать с пищей. Тех витаминов, которые синтезируются кишечной микрофлорой обычно недостаточно для покрытия потребностей организма (строго говоря, это тоже внешняя среда). Исключением является витамин РР, который может синтезироваться из триптофана и витамин D (холекальциферол), синтезируемый из холестерола.

2. Витамины не являются пластическим материалом. Исключение – витамин F.

3. Витамины не служат источником энергии. Исключение – витамин F.

4. Витамины необходимы для всех жизненных процессов и биологически активны уже в малых количествах.

5. При поступлении в организм они оказывают влияние на биохимические процессы, протекающие в любых тканях и органах, т.е. они неспецифичны по органам.

6. В повышенных дозах могут использоваться в лечебных целях в качестве неспецифических средств: при сахарном диабете – B1, B2, B6, при простудных и инфекционных заболеваниях – витамин С, при бронхиальной астме – витамин РР, при язвах ЖКТ – витаминоподобное вещество U и никотиновую кислоту, при гиперхолестеринемии – никотиновую кислоту.[7]

Последствия гипо- и авитаминоза

Симптомы гипо- и авитаминозов сложно диагностируются, так как не всегда сопровождаются характерными признаками. Клиническая картина авитаминозов – довольно редкое явление в современном мире, чаще наблюдаются гиповитаминозы и полигиповитаминозы (недостаток нескольких витаминов).

Куриная слепота (гемералопия) – известное заболевание, связанное с недостатком витамина А. Ретинол необходим для образования родопсина – специфического вещества, отвечающего за светоощущение. Симптомы заболевания довольно характерные. Человек плохо видит в вечернее и ночное время, в сумерках. Днем зрение не ухудшается. Заболевание чаще наблюдается у женщин после 50 лет, что связано с климактерическими изменениями в организме. Гемералопия развивается при недостатке витамина А постепенно, в течение нескольких лет. Усугубляет течение болезни недостаток витаминов РР, рибофлавина.

Гипо- или авитаминоз А проявляется не только гемералопией. При дефиците ретинола страдает конъюнктива, развивается ее сухость (ксероз), синдром «сухого» глаза. Кожные покровы становятся шероховатыми, развивается гиперкератоз, симптом «рыбьей чешуи».(см. приложение 2)

История открытия витаминов тесно связана с таким заболеванием, как бери-бери. Именно это заболевание, представляющее собой алиментарный полиневрит, стало первым в списке медиков, развитие которого связали с недостатком витаминов, а именно, тиамина (витамина В1). Нехватка витамина приводит к повышению концентрации пировиноградной кислоты в организме, что сопровождается нервной симптоматикой.

Дефицит витамина (гиповитаминоз В1) сопровождается тошнотой, слабостью, потерей аппетита. Постепенно увеличивается раздражительность, быстрая утомляемость, снижение концентрации и памяти.

Арибофлавиноз (авитаминоз В2) – заболевание, связанное с недостатком витамина В2 (рибофлавина). Витамин входит в состав ферментных систем и при его дефиците наступает клеточная аноксия (недостаточное поступление кислорода). Клиническая картина заболевания имеет характерные признаки: поражение кожи и слизистой оболочки рта. Развиваются стоматиты, конъюнктивиты, гипохромная анемия, невротические нарушения. Авитаминоз В2 проходит на фоне недостатка других витаминов группы В.

Пеллагра – развивается вследствие длительного авитаминоза В3 и В5. Способствуют развитию болезни недостаток аминокислоты триптофана и витаминов группы В. Дефицит биологически активных веществ приводит к дерматитам, нарушению пищеварения и пеллагрозному полиневриту. Тяжелое течение болезни наблюдается при голоде, военных действиях, природных катастрофах. Приводит к гиповитаминозу РР также алкоголизм, цирроз печени и другие патологии, при которых нарушается всасывание питательных веществ в кишечнике.

Гиповитаминоз пантотеновой кислоты сопровождается следующими клиническими признаками:

ухудшение аппетита, расстройство пищеварения;

Гипо- и авитаминоз В6 (авитаминоз пиридоксина) наблюдается при недостаточном поступлении с пищей, нарушении метаболизма витамина в организме. Дефицит витамина приводит к дерматологическим проблемам, стоматитам, конъюнктивитам, заедам в уголках губ, нарушается работа желудочно-кишечного тракта.

В12-фолиеводефицитная анемия (авитаминоз В12, болезнь Аддисона-Бирмера) тесно связана с дефицитом и нарушением метаболизма не только витамина В12, но и фолиевой кислоты. Эти вещества обладают гемостимулирующим действием, участвуют в синтезе эритроцитов. Дефицит витамина В12 и фолиевой кислоты приводит к мегалобластной анемии. При этом наблюдаются поражения не только кроветворной системы, но и пищеварительной и нервной. Малокровие чаще развивается у женщин после 40 лет, у некоторых этнических групп, у вегетарианцев.

Издавна люди страдали от такого заболевания, как цинга. В начале 20-го века выяснилось, что причиной заболевания является дефицит витамина С. Аскорбиновая кислота самостоятельно организмом не синтезируется и должна поступать в достаточном количестве с пищей. Моряки, жители севера, бедные слои населения часто умирали от этого заболевания.

Цинга развивается при длительном голодании, нарушении пищеварения. Течение болезни носит длительный, истощающий характер. Симптомы болезни: упадок сил, истощение, кровоизлияние, пародонтоз, нарушение сердечной и легочной деятельности.

Такое заболевание как рахит, возникает при недостатке витамина Д. Патология развивается в детском возрасте. При дефиците витамина нарушаются процессы всасывания кальция и фосфора, отложения минералов в костную ткань не происходит, нарушается реабсорбция кальция из почек. Заболевание характеризуется неврологическими и вегетативными изменениями, затем развивается остеомаляция, деформация скелета.

Помимо рахита у детей, гиповитаминоз Д приводит к развитию остеопороза во взрослом возрасте. Это коварное заболевание ничем себя не обнаруживает долгое время. Остеопорозу подвержены по большей части женщины в период менопаузы вследствие гормональной перестройки организма. В этот сложный период жизни особенно важно следить за поступлением витамина Д в достаточном количестве. Под его влиянием кости получают достаточное количество минеральных веществ и остаются прочными.

Причиной фертильных нарушений в организме мужчин и женщин может быть гипо- и авитаминоз Е (авитаминоз токоферола). Недостаток витамина может наблюдаться при соблюдении диет, голодании, климаксе, приеме противозачаточных препаратов. Симптомы дефицита витамина Е:

нарушение фертильности, патология репродуктивной функции;

пигментация кожных покровов;

судороги икроножных мышц, перемежающаяся хромота;

Гиповитаминоз Е приводит к нарушению полового развития в подростковом возрасте, снижению фертильности у обеих полов, потере оплодотворяющей способности сперматозоидов у мужчин, патологии беременности у женщин.

Одной из основных причин геморрагического синдрома является авитаминоз К. Заболевание характеризуется кровоизлияниями, кровотечениями и связано с патологическим нарушением процессов свертывания крови. Болезнь может сопровождаться мегалобластической анемией. При тяжелом авитаминозе наблюдается кровь в моче и кале, желудочное кровотечение. Заболевание требует неотложного медицинского вмешательства.Разница между витаминами и поливитаминами

Главное отличие витаминов от поливитаминов в том, что первые вещества, как правило, имеют натуральное происхождение и попадают в организм человека обособленно от иных полезных веществ. Поливитамины, в свою очередь, могут иметь синтетическое происхождение, дополняться иными полезными веществами и комбинироваться в виде лекарственных препаратов так, чтобы обеспечить одновременное поступление нескольких витаминов, а также большого количества иных полезных элементов в организм человека при приеме. [8]

Правила приема витаминовНатуральные витамины, содержащиеся в продуктах питания, лучшеусваиваются и медленнее выводятся, чем синтетические. Трех-четырехразовый прием пищи позволяет поддерживать их содержание в организме нанеобходимом уровне.[9]ЗаключениеСбалансированность питания и включение полного комплекса витаминов влечебное питание – обязательные требования современной медицины.Витамины имеют уникальнейшие свойства. Они могут ослаблять или дажеполностью устранять побочное действие антибиотиков и других лекарств ивообще нежелательные воздействия на организм человека. Поэтомунедостаточность витаминов или их полное отсутствие, а также избытоквитаминов могут не только неблагоприятно воздействовать на организмчеловека, но и приводить к развитию тяжелых заболеваний.Любое заболевание — это испытание для организма, требующее мобилизациизащитных сил, повышенного расхода биологически активных веществ, в томчисле витаминов. Поэтому пищевой рацион, богатый витаминами, полезенкаждому больному. В то же время отдельные группы витаминов оказываютнаиболее выраженный эффект при профилактике и лечении определенныхзаболеваний. Безусловно, прежде чем начинать прием того или иноговитаминного препарата, надо посоветоваться с врачом, так как каждыйслучай заболевания имеет свои особенности, а использование витаминовявляется только частью лечения.

ЗаключениеСбалансированность питания и включение полного комплекса витаминов влечебное питание – обязательные требования современной медицины.Витамины имеют уникальнейшие свойства. Они могут ослаблять или дажеполностью устранять побочное действие антибиотиков и других лекарств ивообще нежелательные воздействия на организм человека. Поэтомунедостаточность витаминов или их полное отсутствие, а также избытоквитаминов могут не только неблагоприятно воздействовать на организмчеловека, но и приводить к развитию тяжелых заболеваний.Любое заболевание — это испытание для организма, требующее мобилизациизащитных сил, повышенного расхода биологически активных веществ, в томчисле витаминов. Поэтому пищевой рацион, богатый витаминами, полезенкаждому больному. В то же время отдельные группы витаминов оказываютнаиболее выраженный эффект при профилактике и лечении определенныхзаболеваний. Безусловно, прежде чем начинать прием того или иноговитаминного препарата, надо посоветоваться с врачом, так как каждыйслучай заболевания имеет свои особенности, а использование витаминовявляется только частью лечения.

Использованные источники:

Вершигора А.Е. «Витамины круглый год»,-М 1998 г.

Карелин А.О. , Ерунова Н.В. «Витамины», -М.:серия советы доктора 2002.г

Блинкин С.А. « Имунитет и здоровье»,-М.: Знание. 1977г.

источник