Биологическими катализаторами в организме являются гормоны ферменты

Ферменты – биологические катализаторы. Значение ферментов

В природе существуют особые вещества белковой природы, одинаково успешно функционирующие как в живой клетке, так и за её пределами. Это ферменты. С их помощью организм переваривает пищу, выращивает и разрушает клетки, благодаря им эффективно работают все системы нашего организма и, в первую очередь, центральная нервная система. Без ферментов в мире не существовало бы йогурта, кефира, сыра, брынзы, кваса, готовых каш, детского питания. Из чего состоят и как устроены эти биокатализаторы, недавно ставшие верными помощниками биотехнологов, как их отличают друг от друга, как они облегчают нашу жизнь, об этом вы узнаете из этого урока.

Определение ферментов

Ферменты – это белковые молекулы, которые синтезируются живыми клетками. В каждой клетке насчитывается более сотни различных ферментов. Роль ферментов в клетке колоссальна. С их помощью химические реакции идут с высокой скоростью, при температуре, подходящей для данного организма.

То есть ферменты – это биологические катализаторы, которые облегчают протекание химической реакции и за счет этого увеличивают её скорость. Как катализаторы они не изменяют направление реакции и не расходуются в процессе реакции.

Ферментыбиокатализаторы – вещества, увеличивающие скорость химических реакций.

Без ферментов все реакции в живых организмах протекали бы очень медленно и не могли бы поддерживать его жизнеспособность.

Наглядный пример работы ферментов – сладковатый вкус во рту, который появляется при пережевывании продуктов, содержащих крахмал (например, риса или картофеля). Появление сладкого вкуса связано с работой фермента амилазы, которая присутствует в слюне и расщепляет крахмал (рис. 1). Крахмал является полисахаридом, и сам по себе безвкусный, но продукты расщепления крахмала (моносахариды) с меньшей молекулярной массой (декстрины, мальтоза, глюкоза) сладкие на вкус.

Рис. 1. Механизм действия амилазы

Все ферменты – глобулярные белки с третичной или четвертичной структурой. Ферменты могут быть простыми, состоящими только из белка, и сложными.

Сложные ферменты состоят из белковой и небелковой части (белковая часть – апофермент, а добавочная небелковая – кофермент). В качестве кофермента могут выступать витамины – E, K, B групп (рис. 2).

Рис. 2. Классификация ферментов по их составу

Фермент взаимодействует с субстратом, не всей молекулой, а отдельной её частью – т. н. активным центром.

Механизм действия ферментов

Фермент взаимодействует с субстратом и образует короткоживущий фермент-субстратный комплекс. По завершении реакции, фермент-субстратный комплекс распадается на продукты и фермент. Фермент в итоге не изменяется: по окончании реакции он остается таким же, каким был до неё, и может теперь взаимодействовать с новой молекулой субстрата (рис. 3).

Если вы нашли ошибку или неработающую ссылку, пожалуйста, сообщите нам – сделайте свой вклад в развитие проекта.

источник

Как называются биологические катализаторы? Ферменты как биологические катализаторы

Человеческий организм называют биохимической фабрикой совершенно не зря. Ведь каждую минуту в нем происходят тысячи, десятки и сотни тысяч процессов окисления, расщепления, восстановления и прочих реакций. Что позволяет им протекать с такой огромной скоростью, обеспечивая каждую клетку энергией, питанием и кислородом?

Понятие о катализаторах

Как в неорганической, так и в органической химии очень широко используются специальные вещества, способные ускорять протекание химических реакций в несколько тысяч, а иногда и миллионов раз. Название этих соединений — «катализаторы». В неорганической химии это оксиды металлов, платина, серебро, никель и другие.

Их главное действие — образование временных комплексов с участниками реакции, за счет понижения энергии активации процесс осуществляется в несколько раз быстрее. После этого комплекс распадается, и из сферы можно вывести катализатор в том же количественном и качественном составе, что и до начала процесса.

Существует два варианта каталитических реакций:

  • гомогенные — ускоритель и участники в одном агрегатном состоянии;
  • гетерогенные — ускоритель и участники в разных состояниях, есть граница раздела фаз.

Кроме того, есть и противоположные по действию соединения — ингибиторы. Они направлены на замедление необходимых реакций. Так, например, они позволяют снизить количество времени на формирование коррозии.

Биологические катализаторы по своей природе отличаются от неорганических, да и свойства их несколько специфичны. Поэтому в живых системах катализ другой.

Ферменты — что это?

Доказано, что если бы действие специальных веществ, ускоряющих обозначенные процессы, не осуществлялось внутри живых систем, то обычное яблоко в желудке переваривалось бы около двух дней. За такое количество времени начались бы процессы разложения и интоксикация продуктами гниения. Однако этого не происходит, и фрукт полностью перерабатывается уже за полтора часа. Осуществляют это биологические катализаторы, которые в большом количестве присутствуют в составе каждого организма. Но что они собой представляют и на чем основано такое действие?

Биологические катализаторы белковой природы — это ферменты. Их основа — сложные структурная организация, обладающая рядом специфичных свойств. Проще говоря, это уникальные белки, способные снижать энергию активации процессов в живых организмах и осуществлять их со скоростью, превышающей обычные значения в несколько миллионов раз.

Можно привести множество примеров подобных молекул:

  • каталаза;
  • амилаза;
  • оксиредуктаза;
  • глюкозооксидаза;
  • липаза;
  • инвертаза;
  • лизоцим;
  • протеаза и другие.

Таким образом, можно сделать вывод: ферменты — биологические катализаторы белковой природы, которые действуют как сильные ускорители, позволяя осуществлять тысячи процессов в живых организмах с очень высокой скоростью. На их действии основано пищеварение, окисление, восстановление.

Сходства неорганических и белковых катализаторов

Ферменты как биологические катализаторы имеют ряд свойств, схожих с неорганическими. К таковым можно отнести следующие:

  1. Ускоряют только термодинамически возможные реакции.
  2. Не влияют на смещение химического равновесия в равновесных системах, а одинаково ускоряют как прямой, так и обратный процесс.
  3. В итоге в сфере реакции остаются только продукты, катализатор в их число не входит.

Однако, помимо схожести, существуют еще и отличительные особенности ферментов.

Различия в зависимости от природы

Биологические катализаторы имеют несколько специфических особенностей:

  1. Высокая степень избирательности. То есть один белок способен активизировать только какую-то определенную реакцию или группу схожих. Чаще всего работает схема «фермент — субстрат одного процесса».
  2. Чрезвычайно высокая степень активности, ведь некоторые виды белков способны ускорять реакции в миллионы раз.
  3. Ферменты сильно зависят от условий среды. Проявляют активность только в определенном интервале температур. Также сильно влияет рН среды. Существует кривая, показывающая значения минимума, максимума и оптимума по показателям для каждого фермента.
  4. Существуют специальные соединения, называемые эффекторами, которые способны угнетать природу биологических катализаторов либо, наоборот, положительно влиять на них.
  5. Субстрат, на котором работает фермент, должен быть строго специфичен. Существует теория, которая носит название ключа и замка. Она описывает механизм действия фермента на субстрате. Катализатор, подобно ключу, встраивается в субстрат своим активным центром, и начинается реакция.
  6. После процесса фермент частично либо полностью разрушается.

Таким образом, очевидно, что значение белковых катализаторов крайне велико для живых организмов. Однако действие их подчиняется определенным правилам и ограничивается рамками условий окружающей среды.

Изучение катализа в школе

В рамках школьной программы катализаторы изучаются как на химии, так и на биологии. На уроках химии они изучаются с точки зрения веществ, позволяющих осуществлять промышленные синтезы, получать большое количество разнообразных продуктов. На уроках биологии рассматриваются именно биологические катализаторы. 9 класс подразумевает изучение молекулярной биологии и основ биохимии. Поэтому именно на данной ступени образования учащиеся и получают основы знаний о ферментах как действующих веществах в организмах живых существ.

На уроках проводятся опыты, подтверждающие химическую активность данных веществ в определенных температурных интервалах и рН среды:

  • исследование действия перекиси водорода как катализатора на сырую и вареную морковь;
  • воздействие на мясо (обработанное термически и сырое), картофель и прочие продукты.

Ферменты в организме человека

Каждый школьник, достаточно образованный и перешедший рубеж среднего звена образования, знает, как называются биологические катализаторы. Ферменты в организме имеют строго специфическую специализацию. Поэтому для каждого процесса можно назвать свое катализирующее вещество.

Так, все ферменты организма можно разделить на несколько групп:

  • оксидоредуктазы, например, каталаза или алкогольдегидрогеназа;
  • трансферазы — кеназа;
  • гидролазы, важные для пищеварения: пепсин, амилаза, липопротеинлипаза, эстераза и другие;
  • лигазы, например, ДНК-полимераза;
  • изомеразы;
  • лиазы.

Так как все эти соединения имеют белковую природу, а также комплекс витаминов в составе, то повышение температуры тела чревато денатурацией структуры, а следовательно, прекращением всех биохимических реакций. В этом случае организм близок к смерти. Поэтому высокую температуру тела обязательно сбивают во время болезни.

Использование белковых катализаторов в промышленности

Часто ферменты используются в разных отраслях промышленности:

На полках магазинов можно видеть чистящие средства и стиральные порошки с содержанием энзимов — это и есть ферменты, улучшающие качество стирки белья.

Для чего нужны биологические катализаторы?

Переоценить их значение сложно. Ведь они не только позволяют живым организмам жить, дышать, питаться, осуществлять процессы метаболизма, но и дают нам возможность уничтожать промышленные отходы, получать лекарства, защищать и оберегать свое здоровье и состояние окружающей среды.

источник

Ферменты — биологические катализаторы

Вопрос 1. Какие вещества называются катализаторами?
Вещества, которые изменяют скорость химической реакции, оставаясь к концу ее неизменными, называются катализаторами.

Вопрос 2. Какую роль играют ферменты в клетке?
Ферменты – это белковые катализаторы, синтезируемые клетками. Они регулируют скорость и специфичность тысяч химических реакций, протекающих в клетке. Ферменты могут действовать в качестве катализатора не только в клетке, где они образовались, но и за её пределами, например, пищеварительные ферменты работают в полости желудочно-кишечного тракта. Многие ферменты просто растворены в цитоплазме. Молекулы одних ферментов состоят только из белков, другие включают белок и соединение небелковой природы (органическое — кофермент или неорганическое — ионы различных металлов). Ферменты строго специфичны: каждый фермент катализирует определенный тип реакций, в которых участвуют определенные виды молекул субстратов.

Вопрос 3. От каких факторов может зависеть скорость ферментативных реакций?
Скорость ферментативных реакций во многом зависит от концентрации фермента, природы вещества, температуры, давления, реакции среды (кислой или щелочной). Так ферменты теряют свою активность при нагревании; большинство ферментов от 50 до 600 С быстро инактивируются. На ферменты влияет кислотность или щёлочность среды, например, пепсин – фермент, выделяющийся слизистой желудка, — замечателен тем, что он активен только в кислой среде и лучше всего работает при рН =2. трипсин, расщепляющий белки и выделяемый поджелудочной железой, проявляет активность только в щелочной среде, при рН около 8,5. Большинство клеточных ферментов имеют оптимум при нейтральной среде. На активность фермента влияет его концентрация, если рН и температура системы постоянны и субстрат имеется в избытке, скорость реакции прямо пропорциональна количеству фермента. При постоянной температуре, рН и концентрации фермента в системе начальная скорость реакции возрастает вплоть до известного предела пропорционально количеству субстрата. Если ферментная система нуждается в каком-либо коферменте или специфическом ионе-активаторе, то концентрация этого вещества или иона может при определённых обстоятельствах определять общую скорость реакции. Некоторые ферменты специфически чувствительны к определённым ядам: цианиду, иодуксусной кислоте, фториду, люизиту и т. д., и даже очень маленькие концентрации этих ядов могут инактивировать ферменты. Одну из ферментативных реакций, участвующих в расщеплении глюкозы, тормозит фторид, а другую – иодуксусная кислота. Один из ферментов системы переноса электронов (цито-хромоксидаза) особенно чувствителен к цианиду, при незначительной концентрации которого фермент инактивируется, и нарушается клеточное дыхание, что приводит к смерти клеток. Оказавшись в ненадлежащем месте, ферменты сами могут действовать как яды. Например, внутриклеточной инъекции 1мг кристаллического трипсина достаточно для того, чтобы убить крысу. Действие различных ядов змей, пчёл и скорпионов обусловлено тем, что эти яды содержат ферменты, разрушающие клетки крови или клетки других тканей и органов.

Вопрос 4. Почему большинство ферментов при высокой температуре теряет каталитические свойства?
Высокая температура среды, как правило, вызывает денатурацию белка, т. е. нарушение его природной структуры. Поэтому при высокой температуре большинство ферментов утрачивает свои каталитические свойства.

Вопрос 5. Почему недостаток витаминов может вызвать нарушения в процессах жизнедеятельности организма?
Многие витамины входят в состав ферментов. Поэтому недостаток в организме витаминов ведет к ослаблению активности ферментов в клетках, а следовательно, может вызвать нарушения в процессах жизнедеятельности.

источник

Ферменты – биологические катализаторы.

Устанавливая рекомендуемое программное обеспечение вы соглашаетесь
с лицензионным соглашением Яндекс.Браузера и настольного ПО Яндекса .

Глава 1. Что такое ферменты?

1.1. Ферменты – биологические катализаторы…….…………………….2-3
1.2. Типы ферментов……………………………………………………..…3
1.3. Структура ферментов………………………………………………..…3
1.4. Специфичность ферментов и условия их активности. ………….… 4

Глава 2. Значение ферментов в живых организмах.

2.1. Роль ферментов в организме ……………………………………. 4-5

2.2. Местонахождение ферментов в организме . 5


Глава 3. Исследовательская работа.

3.1. Химические результаты исследования ………………………. 5-6

3.2. Механизм работы ферментов…………. ………………………………6
3.3. Исследовательский опрос…………………………………………. 6-7
Глава 4. Заключение.

4.1. Получение ферментов………………………………………………. 7-9
4.2 Болезни и ферменты . …………………………..……………………9-10
4.3. Медицинское значение ферментов…………….……………….……10
4.4. Применение ферментов……………………………………………10-12

Актуальность: Известно, ферменты играют важнейшую роль в регуляции химических превращений обмена веществ. Ферменты обнаружены у всех живых существ, начиная от самых примитивных микроорганизмов. Получено около 600 ферментов. Ферменты способны управлять сложнейшими процессами разрушения и сотворения новых веществ в организме. В настоящее время знания о работе ферментов человек поставил себе на службу в медицине, промышленности, сельском хозяйстве и других сферах жизни.

Цель проекта: Провести исследование по обнаружению ферментов в живых организмах, рассмотреть их значение.

Ферменты – это биологические катализаторы белковой природы, ускоряющие химические реакции в живых организмах и вне их.

Ферменты присутствуют во всех живых клетках и способствуют превращению одних веществ (субстратов) в другие (продукты). Ферменты выступают в роли катализаторов практически во всех биохимических реакциях, протекающих в живых организмах. К 2013 году было описано более 5000 разных ферментов. Они играют важнейшую роль во всех процессах жизнедеятельности, направляя и регулируя обмен веществ организма.

Подобно всем катализаторам, ферменты ускоряют как прямую, так и обратную реакцию, понижая энергию активации процесса. Химическое равновесие при этом не смещается ни в прямую, ни в обратную сторону. Каждая молекула фермента способна выполнять от нескольких тысяч до нескольких миллионов «операций» в секунду.

Например, одна молекула фермента ренина, содержащегося в слизистой оболочке желудка телёнка, створаживает около 106 молекул казеиногена молока за 10 мин при температуре 37 ° C .

При этом эффективность ферментов значительно выше эффективности небелковых катализаторов — ферменты ускоряют реакцию в миллионы и миллиарды раз, небелковые катализаторы — в сотни и тысячи раз.

Все ферменты разделяются на три основных группы: амилаза , липаза и протеаза .

Фермент амилаза необходим для переработки углеводов. Под воздействием амилазы углеводы разрушаются и легко всасываются в кровь. Амилаза присутствует как в слюне, так и в кишечнике. Амилаза тоже бывает разной. Для каждого вида сахаров существует собственный вид этого фермента.

Липаза – это ферменты, которые присутствуют в желудочном соке и вырабатываются поджелудочной железой. Липаза необходима для усвоения организмом жиров.

Протеаза – это группа ферментов, которые присутствуют в желудочном соке и тоже вырабатываются поджелудочной железой. Кроме этого, протеаза присутствует и в кишечнике. Протеаза необходима для расщепления белков.

Активность ферментов определяется их трёхмерной структурой.

Как и все белки, ферменты синтезируются в виде линейной цепочки аминокислот, которая сворачивается определённым образом. Каждая последовательность аминокислот сворачивается особым образом, и получающаяся молекула (белковая глобула) обладает уникальными свойствами. Несколько белковых цепей могут объединяться в белковый комплекс. Третичная структура белков разрушается при нагревании или воздействии некоторых химических веществ.

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.


Влияние условий среды на активность ферментов

Активность ферментов зависит от условий в клетке или организме — давления, кислотности среды, температуры, концентрации растворённых солей (ионной силы раствора) и др.


Роль ферментов в организме

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов — все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма — дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. — обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значительной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.


Местонахождение ферментов в организме

В клетке часть ферментов находится в цитоплазме, но в основном ферменты связаны с определенными клеточными структурами, где и проявляют свое действие. В ядре, например, находятся ферменты, ответственные за репликацию — синтез ДНК(ДНК-полимеразы), за ее транскрипцию — образование РНК (РНК-полимеразы). В митохондриях присутствуют ферменты, ответственные за накопление энергии, в лизосомах — большинство гидролитических ферментов, участвующих в распаде нуклеиновых кислот и белков.


Химические результаты исследования

Нами был проведен опыт по изучению механизма действия ферментов на примере вареного куриного филе и сырого.

В результате добавления в пробирки с перекисью водорода образцов продуктов животного происхождения наблюдается результат каталитической функции белков. Каталитическая функция белков играет исключительно важную роль для нашего организма. Все биологические катализаторы — ферменты — вещества белковой природы. Их функция заключается в ускорении химической реакции, протекающих в клетке, в десятки и сотни тысяч раз.

1. Активность фермента проявилась в пробирке с живыми тканями и не проявилась в пробирке с мёртвыми тканями, потому что в результате денатурации белка, нарушается структура молекулы фермента, её активность снижается, затем прекращается.

2. Измельчение ткани влияет на активность фермента из-за увеличения площади прикосновения, таким образом скорость протекания реакции увеличивается.

3. Каталаза — фермент, имеющийся практически во всех клетках, разрушает пероксид водорода с невероятной скоростью (более 5-ти миллионов молекул в минуту).

Важные отличия ферментов и неорганических катализаторов в том, что реакции с участием неорганических катализаторов протекают, как правило, при высоких давлениях, а ферменты работают при нормальном давлении. Самое главное отличие в том, что скорости реакций, катализируемых ферментами, во много раз больше.

При биологическом окислении в клетках растений и животных ядовитое вещество — перекись водорода, которая под действием ферментов каталазы или пероксиды расщепляется до воды и кислорода.


Механизм работы ферментов

Фермент, соединяясь с субстратом, образует фермент — субстратный комплекс. В таком комплексе шансы на то, что реакция произойдёт, значительно возрастают. По завершению реакции фермент (субстратный комплекс) распадается на продукты и фермент. Результаты исследования показали, что молекулы большинства ферментов во много раз больше, чем молекулы тех субстратов, которые атакуют данный фермент, и что в контакте с субстратом находится лишь небольшая часть молекулы фермента (от 3 до 12 аминокислотных остатков). Эту часть называют активным центром фермента. Роль остальных аминокислотных остатков состоит в том, чтобы обеспечить молекуле фермента правильную глобулярную форму, чтобы активный центр мог работать наиболее активно.

Мы провели опрос, среди учащихся МАОУ СШ №55 «Лингвист» по следующим вопросам:

Какова их роль в организме?

Что влияет на активность ферментов?

Какова химическая природа ферментов?

Чьи работы положили начало ферментологии, как самостоятельному разделу биологической химии?

Из 20 человек лишь 3 ответили правильно на все вопросы. 4 и 5 вопросы оказались самыми трудными для ребят.

Ферменты являются посредниками между организмом и окружающей средой, обеспечивают адаптацию организма к изменяющимся условиям (авторегуляторы).

Ферменты участвуют в осуществлении всех процессов обмена веществ, в реализации генетической информации. Переваривание и усвоение пищевых веществ, синтез и распад белков, нуклеиновых кислот, жиров, углеводов и других соединений в клетках и тканях всех организмов — все эти процессы невозможны без участия ферментов. Любое проявление функций живого организма — дыхание, мышечное сокращение, нервно-психическая деятельность, размножение и др. — обеспечивается действием ферментов. Индивидуальные особенности клеток, выполняющих определенные функции, в значительной мере определяются уникальным набором ферментов, производство которых генетически запрограммировано. Отсутствие даже одного фермента или какой-нибудь его дефект могут привести к серьезным отрицательным последствиям для организма.

Обычно ферменты выделяют из тканей животных, растений, клеток и культуральных жидкостей микроорганизмов, биологических жидкостей (кровь, лимфа и др.). Для получения некоторых труднодоступных ферментов используются методы генетической инженерии. Из исходных материалов ферменты экстрагируют солевыми растворами. Затем их разделяют на фракции, осаждая солями [обычно (NH 4 ) 2 SO 4 ] или, реже, органическими растворителями, и очищают методами гельпроникающей и ионообменной хроматографии. На заключительных этапах очистки часто используют методы аффинной хроматографии. Контроль за ходом очистки ферментов и характеристику чистых препаратов осуществляют, измеряя каталитическую активность ферментов с применением специфических (обычно дающих цветные реакции) субстратов. За единицу количества фермента принимают такое его количество, которое катализирует превращение 1 мк моля субстрата в 1 мин в стандартных условиях. Число единиц фермента, отнесенное к 1 мг белка, называется удельной активностью.

Получение ферментов с помощью микроорганизмов более выгодно, чем из растительных и животных источников. Микробные клетки продуцируют более 2 тысяч ферментов, катализирующих биохимические реакции, связанные с ростом, дыханием и образованием продуктов. Многие из этих ферментов могут быть выделены и проявляют свою активность независимо от клетки. Для получения ферментных препаратов используют как микроскопические грибы, так и бактерии и дрожжи. Иногда получение технического ферментного препарата кончается проведением процесса ферментации, однако активность ферментов в культуральной жидкости быстро снижается. Поэтому широко практикуют получение сухих технических ферментных препаратов.

В мире производится около 20 ферментов в объеме 65 тыс. тонн (а существует, как предполагают 25000 ферментов). Например, промышленным способом производят такие ферменты как амилаза, глюкоамилаза, протеаза, инвертаза, пектиназа, каталаза, стрептокиназа, целлюлаза и другие.

Амилазы и протеазы используют в текстильной, хлебопекарной и кожевенной промышленности. Пектолитические ферменты могут быть использованы для мацерации тканей при переработке растительного сырья, например при получении льноволокна. Щелочные протеазы, особенно иммобилизованные, очень эффективно используются в составе моющих средств. Кроме протеолитических ферментов в состав моющих средств вводят липазу, целлюлазу, оксидазу и амилазу для удаления загрязнений крахмального происхождения. Использование иммобилизованной глюкозоизомеразы для непрерывного получения глюкозы является наиболее крупным процессом такого рода в мире.

Микробные ферменты активно используют в клинической диагностике при определении уровня холестерина в крови и мочевой кислоты. Ферменты предлагают использовать для очистки канализационных и водопроводных труб и т.д. и т.п. Ферменты для медицинских или аналитических целей должны быть высокоочищенными.

В биологических объектах ферменты обычно находятся в фиксированном состоянии на поверхности различных клеточных структур — наиболее часто на мембранах. Благодаря этому ферменты сохраняют свою активность длительное время. В технологии долгое время применялись препараты свободных ферментов; в таком состоянии срок их использования был коротким — один производственный цикл. Для повышения стабильности выделенных ферментов используют технику иммобилизации, т.е. связывания ферментов на поверхности нерастворимого в воде носителя, например, органических полимеров, стекла, минеральных солей, силикатов и т.п. Иммобилизованные ферменты можно длительное время использовать в биохимических реакторах в условиях непрерывного процесса.

Иммобилизация и получение связанных ферментных препаратов стало возможным благодаря детальному изучению строения многих ферментов. Раскрыт аминокислотный состав ряда ферментных белков, их пространственная конфигурация, выявлены активные центры, значение различных функциональных групп в проявлении каталитической активности фермента и так далее.

Примеры использования иммобилизованных ферментов — изомеризация глюкозы во фруктозу, гидролиз белков, трансформация стероидов, гормонов и т.д. Новая область применения иммобилизованных ферментов — создание на их основе бессеребряных фотоматериалов. На основе действия ферментов построены биолюминесцентные и иммуноферментные методы анализа, отличительной чертой которых является высокая чувствительность и абсолютная специфичность.


Болезни, связанные с нарушением выработки ферментов

Отсутствие или снижение активности какого-либо фермента (нередко и избыточная активность) у человека приводит к развитию заболеваний (энзимопатий) или гибели организма. Так, передаваемое по наследству заболевание детей — галактоземия (приводит к умственной отсталости) — развивается вследствие нарушения синтеза фермента, ответственного за превращение галактозыв легко усваиваемую глюкозу. Причиной другого наследственного заболевания — фенилкетонурии, сопровождающегося расстройством психической деятельности, является потеря клетками печени способности синтезировать фермент, катализирующий превращение аминокислоты фенилаланинав тирозин. Определение активности многих ферментов в крови, моче, спинно-мозговой, семенной и других жидкостях организма используется для диагностики ряда заболеваний. С помощью такого анализа сыворотки крови возможно обнаружение на ранней стадии инфаркта миокарда, вирусного гепатита, панкреатита, нефрита и других заболеваний.

Если происходит мутация в гене, кодирующем определенный фермент, может измениться аминокислотная последовательность фермента. При этом в результате большинства мутаций его каталитическая активность снижается или полностью пропадает. Если организм получает два таких мутантных гена (по одному от каждого из родителей), в организме перестает идти химическая реакция, которую катализирует данный фермент. Например, появление альбиносов связано с прекращением выработки фермента тирозиназы, отвечающего за одну из стадий синтеза темного пигмента меланина. Фенилкетонурия связана с пониженной или отсутствующей активностью фермента фенилаланин-4-гидроксилазы в печени.

В настоящее время известны сотни наследственных заболеваний, связанные с дефектами ферментов. Разработаны методы лечения и профилактики многих из таких болезней.

На сегодняшний день в различных отраслях хозяйства применение ферментов является передовым достижением. Особое значение ферменты нашли в пищевой промышленности. Ведь именно из-за наличия ферментов в тесте происходит его поднятие и разбухание. Как известно, разбухание теста происходит под действием углекислого газа CO 2 , который в свою очередь образуется в результате разложения крахмала под действием фермента амилазы , которая уже содержится в муке. Но в муке этого фермента не достаточно, его, обычно, добавляют. Ещё один фермент протеазы , придающий тесту клейковину, способствует удержанию углекислого газа в тесте.

Изготовление алкогольных напитков также не обходится без участия ферментов. В этом случае широко применяются ферменты, которые находятся в дрожжах. Разнообразие сортов пива получают именно различными комбинациями комплексных соединений ферментов. Ферменты, также участвуют в растворении осадков в спиртных напитках, например, чтобы в пиве не появлялся осадок в него добавляют протеазы (папаин, пепсин), которые растворяют выпадающие в осадок белковые соединения.
Производство кисломолочных продуктов, например, простокваши, основана на химическом превращении лактозы (то есть молочного сахара) в молочную кислоту. Кефир производят подобным образом, но производственной особенностью является то, что берут не только кисломолочные бактерии, но и дрожжи. В результата переработки лактозы образуется не только молочная кислоты, но ещё и этиловый спирт. При получении кефира происходит ещё одна достаточно полезная для организма человека реакция – это гидролиз белков, что в последствии употребления человеком кефира способствует его лучшему усвоению.
Производство сыра тоже связано с ферментами . Молоко содержит белок — казеин, который в процессе химической реакции под действием протеаз изменяется, и в результате реакции выпадает в осадок.
Протеазы широко используют для обработки кожевельного сырья. Его способность производить гидролиз белков (расщепление белков) широко применяют для выведения стойких пятен от шоколада, соусов, крови и т.д. Фермент целлюлаза — используется в стиральных порошках. Он способен удалять «катышки» с поверхности тканей. Важной особенностью стирки с порошками, содержащими целые комплексы ферментов, является то, что стирка в должна выполняться в тёплой, но не горячей воде, так как горячая вода для ферментов является губительной.
Применение ферментов в медицине связано с их способностью заживлять раны, растворять образующиеся тромбы. Иногда ферменты умышленно вводят в организм для их активизации, а иногда из-за излишней активности ферментов, могут вводить вещества, которые действуют как ингибиторы (вещества, замедляющие протекание химических реакций). Например, под действием отдельных ингибиторов, бактерии теряют способность размножаться и расти.
Применение ферментов в медицине также связано с проведением различных анализов по определению заболеваний. В этом случае ферменты играют роль веществ, вступающих в химическое взаимодействие или способствующие химическим превращениям в физиологических жидкостях организма. В результате получаются определённые продукты химических реакций, по которым в лабораториях распознают наличие того или иного возбудителя заболевания. Среди таких ферментов и их применения наиболее известен фермент глюкозооксидаза, который позволяет определить наличие сахара в моче или крови человека. Кроме того, наравне с отмеченным, существуют ферменты, которые способны определять наличие алкоголя в крови. Этот фермент называется алкогольдегидрогеназа

1. Тарханов И. Р., Ферменты, в физиологии // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.). — СПб., 1890—1907.
2. Энзимы // Энциклопедический словарь Брокгауза и Ефрона: В 86 томах (82 т. и 4 доп.).

3. Фершт Э. Структура и механизм действия ферментов. М., 1980.

4. Страйер Л. Биохимия. М., 1984-1985. Т. 1. С. 104-131. O . 2. С. 23-94.

5. Марри Р., Греннер Д., Мейес П., Родуэлл В. Биохомия человека. Т. 1. М., 1993.

6. Ферменты и нуклеиновые кислоты. — СПб.: Изд-во С.-Петерб. ун-та, 1997.

7. Молекулярная динамика ферментов. — М.: Изд-во Моск. ун-та, 2000.

8. Кислухина О. В. Ферменты в производстве пищи и кормов. — М.: ДеЛи принт, 2002.

9. Федоренко Б. Н. Ферменты и мембраны: научные основы взаимодействия. — М.: МГУПП, 2002.

10. Ферменты микроорганизмов. — Казань: Унипресс, 1998.
11. Николаев А.Я. Биологическая химия. М.: «Высшая школа», 1998, с.53-58, 70-73, 78, 81-83. 12. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: «Медицина», 1990, с. 92-93, 95-97, 105-108, 112-115, 126-128, 131-132.

13. Березов Т.Т., Коровкин Б.Ф. Биологическая химия. М.: «Медицина», 2004, с. 114-116, 118-120, 129-134, 139-143, 159-163, 165-168.

14. Кушманова О.Д., Ивченко Г.М. Руководство к лабораторным занятиям по биологической химии. М.: М. Медицина, 1983, раб 24 (п. 1), 25.

15. Учебник Химии 11 класс, Кузнецова Н.Е., Литвинова Т.Н., Лёвкин А.Н. с.132.

источник