Биология гормоны поступают в

Гормоны

В современном мире только ленивый не сталкивался хотя бы раз в жизни с понятием «гормоны». Несмотря на широкую популяризацию этого понятия, многие не понимают полного смысла этого слова и важность гормонов в жизни каждого человека. Что же такое гормоны? Если говорить об официальной трактовке этого понятия, то это особые вещества различной природы, вырабатываемые клетками эндокринных желез или синтетические формы, поступающие извне, которые способны взаимодействовать с рецепторами клеток органов и тканей и оказывать свое влияние на их функционирование. Таким образом, гормоны можно назвать регуляторами многих процессов в организме.

Помимо гормонов, существуют также различные гормонально-активные вещества, гормоноподобные субстанции, которые способны оказывать сходное действие, не являясь гормонами в истинном значении этого слова. Они вырабатываются не эндокринными клетками, могут взаимодействовать вне кровеносного русла.

Гормоны влияют практически на все обменные процессы организме, важны для поддержания гомеостаза. Их роль в организме нельзя переоценить, ведь нарушения гормональной сферы – одни из самых коварных заболеваний. Гормоны вырабатываются в течение всей жизни человека, их количество может колебаться в зависимости от возраста и пола человека, его физиологического состояния.

Классификация гормонов достаточно сложная, поскольку их можно разделить на группы по многим отдельным признакам: в зависимости от органа, их вырабатывающего; по химическому строению; по механизму воздействия; по половому признаку – мужские и женские; по виду воздействия на клетки-мишени и другие. Кроме того, что гормоны влияют на клетки-мишени, они взаимодействуют и между собой, оказывая те или иные дополнительные эффекты. Например, некоторые гормоны, не связанные с репродуктивной сферой, а оказывающие высокоспецифическое воздействие, тиреоидные, например, за счет побочных эффектов влияют и на работу репродуктивной сферы, вызывая разнообразные нарушения функции половых органов и бесплодие.

Если говорить о классификации гормонов по анатомическому признаку (то есть в зависимости от места выработки), то они бывают: гипоталамические, гипофизарные (в отдельности адено- и нейрогипофиза), надпочечниковые, тиреоидные, половые, плацентарные и т.д. наибольшую долю гормонов вырабатывают эндокринные железы, однако определенный пул приходится на долю так называемой APUD системы. Она представляет собой пул клеток, рассредоточенных практически по всему организму.

Классификации по химическому происхождению и механизму воздействия иногда объединяются, поскольку существует непосредственная взаимосвязь между структурой вещества и способом его влияния на орган-мишень. Так, различают гормоны стероидной структуры, белковые (или пептидные), производные аминокислот и производные жирных кислот.

Каждый класс биологически активных веществ выполняет свои, особые функции. Пептидные гормоны, к примеру, преимущественно влияют на разнообразные метаболические процессы. В эту категорию входят панкреатические гормоны– инсулин и глюкагон, гипофизарные и гипоталамические гормоны и некоторые другие. Эта группа биологически активных веществ оказывает непосредственное влияние на работу репродуктивной системы человека, в особенности, это касается женщин. Чаще всего такие гормоны вырабатываются в виде предшественников и уже потом метаболизируются в активные формы. Белковые гормоны способен вырабатывать гипофиз (пролактин, тропные гормоны – соматотропный, тиреотропный, гонадотропный), гипоталамус (окситоцин и вазопрессин, которые транспортируются по особым путям в заднюю долю гипофиза и выделяются уже оттуда в кровоток), поджелудочная железа (инсулин и глюкагон), почки (эритропоэтин), паращитовидные железы (паратгормон).

Что касается гормонов-производных аминокислот, то речь идет о трех основных видах гормонов – гормоны щитовидной железы, катехоламины и мелатонин. Все они представляют собой производные тирозина или триптофана. Щитовидная железа выделяет так называемые тиреоидные гормоны, которые являются производными тирозина и необходимы для роста и развития организма, нормальной работы обменных механизмов, а также для осуществления стресс-реакций. При нарушении функции щитовидной железы, как в сторону повышенной секреции гормонов, так и пониженной, наступают достаточно серьезные проблемы с работой и половой системы, особенно этому подвержены женщины. Начинаться изменения могут с нарушений цикла, гормональных сбоев и доходить вплоть до бесплодия. Надпочечники вырабатывают адреналин и норадреналин – основные катехоламины, а гипоталамус – дофамин.

Спектр эффектов у этих веществ чрезвычайно широкий и варьируется от медленных до быстрых эффектов. Мелатонин важен для пигментного обмена, к тому же, среди дополнительных эффектов — антигонадотропное действие и седация.

Стероидные гормоны также незаменимы для поддержания всех функций организма, поскольку к этому виду гормонов относятся половые стероиды и кортикостероидные гормоны. Стероидные гормоны вырабатываются надпочечниками (корковым слоем) – глюкокортикостероиды, и клетками преимущественно половых желез – андрогены и эстрогены, прогестерон. Такие гормоны обладают свойством высокой липофильности, поэтому достаточно просто проникают через мембраны клеток и воздействуют внутриклеточно. Как и практически все биологически активные вещества, стероиды переносятся с помощью специальных транспортных белков.

К гормонам-производным жирных кислот (полиненасыщенных) относят две большие группы биологически активных веществ – ретиноиды, а точнее ретиноевая кислота, и эйкозаноиды. Ретиноевая кислота важна в развитии соединительной ткани, в частности, костей, мягких тканей, сетчатки глаза. Учитывая, что для достаточного ее количества необходимо некоторое поступление витамина А с пищей, иногда возникает ее избыток, что является опасным состоянием, особенно для лиц, планирующих беременность и беременных, так как может оказывать тератогенный эффект – вызывать пороки развития плода. Эйкозаноиды – это тканевые гормоны, которые образуются повсеместно в организме человека и воздействуют там, где образовались. Несмотря на то, что из-за этого их концентрация невелика в сыворотке крови, это не уменьшает их важности для нормального функционирования всех органов и систем благодаря местному воздействию.

Гормоны начинают работать в организме еще с начала внутриутробной жизни. Вначале это происходит в виде влияния материнских гормонов, а затем и клетки плода начинают их синтезировать.

Регуляция синтеза гормонов в организме происходит преимущественно благодаря механизму обратной связи. Существует своя иерархия всех гормонов, учитывая их влияние друг на друга и на клетки-мишени. Так, на первом месте этой пирамиды находятся гипоталамические гормоны, которые еще называют рилизинг-факторы. Они имеют пептидную структуру и регулируют работу гипофиза, оказывая тормозное или стимулирующее влияние на выработку им своих гормонов. Часть гипоталамических гормонов связана с функцией аденогипофиза – это либерины (оказывают стимулирующее действие) и статины (оказывают тормозное действие), другая часть поступает в заднюю долю гипофиза – окситоцин и вазопрессин, которые некоторые ошибочно принимают за гипофизарные гормоны, хотя они лишь депонируются в гипофизе и выделяются оттуда по необходимости в кровоток, однако их синтез происходит именно в гипоталамусе.

Под воздействием гипоталамических гормонов, гипофиз выделяет так называемые тропные гормоны, то есть имеющие узконаправленное действие на определенный орган или ткань. Так, гонадотропин действует на половые железы, регулируя секрецию ими стероидных гормонов, тиреотропин – на ткань щитовидной железы. Фоллитропин и лютропин – особо важны для женского здоровья, поскольку они обусловливают вместе с гонадотропином нормальное половой системы и ее функционирование. Сбои в работе этих гормонов приводят к весьма плачевным последствиям для репродуктивной функции, вплоть до бесплодия. Нарушение синтеза тиреотропного гормона также может быть причиной эндокринного фактора проблем с зачатием и вынашиванием малыша.

Как осуществляется механизм обратной связи? Влияние гормонов на синтез друг друга выглядит следующим образом. Рилизинг-гормоны гипоталамуса оказывают влияние на синтез гормонов гипофиза, стимулируя или вызывая торможение их синтеза. Гипофизарные гормоны влияют на органы-мишени, которыми являются железы внутренней секреции. Эти эндокринные железы в ответ на это выделяют то или иное количество специфических гормонов, которые воздействуют уже непосредственно на свои клетки-мишени в организме. Сигнал о концентрации этих веществ в крови поступает в гипоталамус и в зависимости от их уровня в крови гипоталамус выделяет то или иное количество рилизинг-гормонов.

Как же гормоны влияют непосредственно на самочувствие и состояние здоровья человека? Получить информацию об этом можно, обратившись за консультацией на сайте, которая проводится бесплатно опытными специалистами, владеющими знаниями в этой области. Помимо влияния на синтез других гормонов, они обладают крайне широкими функциями:

  • Влияют на психическую и эмоциональную сферу, настроение, умственные способности;
  • Влияют на активность иммунной системы;
  • Влияют на процессы обмена, метаболизм в клетках и тканях, обмен веществ;
  • Участвуют в формирование стресс-реакций, помогая организму обороняться, защищаться, спасаться, реализуя инстинкты самосохранения;
  • Обеспечивают процессы адаптации организма к условиях окружающей среды;
  • Формируют течение различных жизненных циклов в организме: максимальные рост и развитие в детском возрасте, половое развитие в пубертатный период,
  • реализацию детородной функции в репродуктивном возрасте, процессы угасания активности всех систем в зрелом и пожилом периоде жизни;
  • Регулируют жизненно-важные функции;

Итак, какие гормоны влияют на те или иные функции? На развитие организма в умственном и физическом плане больше всего влияют соматотропин, тиреоидные и половые гормоны. Помогать организму адаптироваться к меняющимся условиям окружающей среды призваны, преимущественно, гормоны коры и мозгового вещества надпочечников. Обеспечивают реализацию детородной функции больше всего гормоны гипоталамо-гипофизарно-яичниковой системы. Так, все гормоны можно разделить по действию на ростовые и регуляторные (основной орган, их вырабатывающий – гипофиз), половые ( вырабатываются преимущественно половыми железами), стрессовые (особенно мозговое вещество надпочечников – катехоламины), кортикостероидные (образуются в коре надпочечников) и обменные (панкреатические, тиреоидные и другие).

Таким образом, только при нормальном функционировании эндокринной системы и взаимодействии гормонов может наблюдаться нормальное самочувствие и состояние здоровья человека. Отрицательно влияют на работу нейроэндокринной системы вредные привычки пристрастия, нарушения режима работы и отдыха, неправильное питание. Влияя хотя бы на одно звено в иерархии гормонов, организму наносится тяжелый удар и наблюдается дисфункция всей системы. Например, стрессовые воздействия, хроническое недосыпание могут вызывать повышение уровня пролактина. В результате изменения его количества нарушается выработка фолликулостимулирующего гормона и некоторых других, что приводит к нарушению функции яичников, изменяя уровень синтеза ими своих половых гормонов. В свою очередь, каскад таких реакций приводит к нарушению работы репродуктивной сферы и бесплодию, когда, казалось бы, нет прямого влияния образа жизни в этом случае на репродуктивную систему.

В реализации репродуктивной функции участвуют два основных класса гормонов – мужские и женские. Это деление очень условно, поскольку и те, и иные в разных концентрациях существуют и в мужском и женском организме.

У мужчин выше концентрация мужских гормонов – андрогенов. Они нужны для формирования тела по мужскому типу – широкие плечи, мышечная масса, первичные и вторичные половые признаки по мужскому типу, низкий тембр голоса, формирование полового влечения. К таким гормонам относятся тестостерон, андростендион (который, кстати, является предшественником, как тестостерона, так и эстрогенов), в какой-то степени антимюллеров гормон. Андростендион выполняет основную функцию половой дифференциации и вырабатывается клетками яичек и надпочечниками. Антимюллеров гормон в мужском организме участвует в развитии половой системы, а так же важен в процессе сперматогенеза. Тестостерон – основной андроген, который отвечает за формирование половых признаков, играет важную роль в формировании либидо, поведенческих реакция, направленных на продолжение рода. Однако нормальная работа мужской половой системы невозможна без влияния женских половых гормонов, даже если они находятся в небольших физиологических концентрациях.

Что касается женских половых гормонов, то к ним традиционно относят эстрогены и прогестины. Эстрогены представлены эстрадиолом и эстриолом. Эстрадиол оказывает преимущественное влияние на половое развитие девочки, создание условий, при которых будет возможна реализация репродуктивной функции. Эстриол более характерен для периода беременности, являясь одним из маркеров нормального развития плода. Гестагены представлены прогестероном, который также необходим для обеспечения нормального менструального цикла, без которого наступление беременности естественным путем невозможно. Особое значение этот гормон приобретает при беременности, «сохраняя» ее. Кроме того, для обеспечения овуляции нужен антимюллеров гормон. Его концентрация в крови отражает овуляторный запас женщины, что используют при определении вероятности наступления беременности в лечении бесплодной женщины. Еще одним строго специфическим женским гормоном является релаксин, который вырабатывается в яичниках и плацентарной ткани и оказывает свое влияние на течение беременности. Нормальное функционирование женской репродуктивной системы невозможно без присутствия мужских половых гормонов в крови, главное, чтобы был правильный баланс между их уровнями.

Половые стероиды начинаются вырабатываться еще с внутриутробного периода плода, однако пик их активности наступает в пубертатном и репродуктивном возрасте, затем их влияние на организм ослабевает, что является одной из причин старения клинически.

Нельзя однозначно сказать, какой гормон важнее для нормальной работы половой системы, в этом случае важнее слаженность и баланс в их уровне. Только при таком варианте возможна нормальная реализация детородной функции. Однако, к сожалению, все чаще возникают проблемы с невозможностью зачать ребенка, связанные с эндокринной дисфункцией. Консультацию по этому вопросу можно получить на этом сайте бесплатно у высококвалифицированных специалистов.

При нарушении гормонального баланса между эстрогенами и андрогенами возникают изменения не только в репродуктивной сфере, но и в состоянии других органов и систем организма. Так, например, при повышении уровня мужских половых гормонов у женщины развивается явление вирилизации – приобретения мужских черт. Пропорции тела претерпевают изменения в сторону схожести с мужскими, определяется преобладание мышечной ткани с распределением жировой ткани по мужскому типу, меняется голос, формируется оволосение по мужскому типу и т.д.Такое может происходить практически в любом возрасте. У мужчин также могут быть подобные изменения в сторону преобладания женских черт – явление феминизации, которое наблюдается при чрезмерном повышении уровня женских половых стероидов.

Заподозрить у себя нарушение гормональной сферы нередко не представляет труда. Могут беспокоить жалобы на плохое самочувствие, немотивированную слабость и апатию, раздражительность, перепады настроения, беспричинное повышение температуры тела до субфебрильных цифр, сухость во рту, изменения аппетита, нарушения сна, сухость кожи или напротив, потливость, нарушения менструального цикла, невозможность зачать или выносить ребенка. Симптомы гормональных нарушений крайне разнообразны, дифференцировать их может только специалист в этой сфере.

Нарушение гормонального статуса может быть крайне опасно для здоровья и, иногда, даже жизни женщины. Поэтому нельзя самостоятельно диагностировать те или иные нарушения у себя, предпринимать попытки самолечения. Это зачастую только усугубляет проблему до такой степени, что даже специалистам становится трудно справиться за проблемами со здоровьем. Если нужна консультация дистанционно, ее можно получить у опытных специалистов на этом сайте, обратившись в специальный раздел.

Лечение гормональных нарушений предусматривает, по возможности, устранение этиологического фактора – то есть причины патологии, а также же коррекцию выявленных изменений. Иногда требуется лишь модификация образа жизни, какие-то мягкие формы лечения, однако если изменения достаточно серьезны, может понадобиться и заместительная гормональная терапия, и медикаментозная коррекция. В некоторых случаях показаны оперативные методы лечения. Показания к тому или иному виду терапии определяет врач, объясняя пациенту все нюансы состояния его здоровья и возможные варианты преодоления проблемы

Окончательное решение принимается совместно в диалоге врача и пациента, подбирается наиболее оптимальный путь лечения.

источник

ГОРМОНЫ

ГОРМОНЫ, органические соединения, вырабатываемые определенными клетками и предназначенные для управления функциями организма, их регуляции и координации. У высших животных есть две регуляторных системы, с помощью которых организм приспосабливается к постоянным внутренним и внешним изменениям. Одна из них – нервная система, быстро передающая сигналы (в виде импульсов) через сеть нервов и нервных клеток; другая – эндокринная, осуществляющая химическую регуляцию с помощью гормонов, которые переносятся кровью и оказывают эффект на отдаленные от места их выделения ткани и органы. Химическая система связи взаимодействует с нервной системой; так, некоторые гормоны функционируют в качестве медиаторов (посредников) между нервной системой и органами, отвечающими на воздействие. Таким образом, различие между нервной и химической координацией не является абсолютным.

Гормоны есть у всех млекопитающих, включая человека; они обнаружены и у других живых организмов. Хорошо описаны гормоны растений и гормоны линьки насекомых (см. также ГОРМОНЫ РАСТЕНИЙ).

Физиологическое действие гормонов направлено на: 1) обеспечение гуморальной, т.е. осуществляемой через кровь, регуляции биологических процессов; 2) поддержание целостности и постоянства внутренней среды, гармоничного взаимодействия между клеточными компонентами тела; 3) регуляцию процессов роста, созревания и репродукции.

Гормоны регулируют активность всех клеток организма. Они влияют на остроту мышления и физическую подвижность, телосложение и рост, определяют рост волос, тональность голоса, половое влечение и поведение. Благодаря эндокринной системе человек может приспосабливаться к сильным температурным колебаниям, излишку или недостатку пищи, к физическим и эмоциональным стрессам. Изучение физиологического действия эндокринных желез позволило раскрыть секреты половой функции и чудо рождения детей, а также ответить на вопрос, почему одни люди высокого роста, а другие низкого, одни полные, другие худые, одни медлительные, другие проворные, одни сильные, другие слабые.

В нормальном состоянии существует гармоничный баланс между активностью эндокринных желез, состоянием нервной системы и ответом тканей-мишеней (тканей, на которые направлено воздействие). Любое нарушение в каждом из этих звеньев быстро приводит к отклонениям от нормы. Избыточная или недостаточная продукция гормонов служит причиной различных заболеваний, сопровождающихся глубокими химическими изменениями в организме.

Изучением роли гормонов в жизнедеятельности организма и нормальной и патологической физиологией желез внутренней секреции занимается эндокринология. Как медицинская дисциплина она появилась только в 20 в., однако эндокринологические наблюдения известны со времен античности. Гиппократ полагал, что здоровье человека и его темперамент зависят от особых гуморальных веществ. Аристотель обратил внимание на то, что кастрированный теленок, вырастая, отличается в половом поведении от кастрированного быка тем, что даже не пытается взбираться на корову. Кроме того, на протяжении веков кастрация практиковалась как для приручения и одомашнивания животных, так и для превращения человека в покорного раба.

Что такое гормоны?

Согласно классическому определению, гормоны – продукты секреции эндокринных желез, выделяющиеся прямо в кровоток и обладающие высокой физиологической активностью. Главные эндокринные железы млекопитающих – гипофиз, щитовидная и паращитовидные железы, кора надпочечников, мозговое вещество надпочечников, островковая ткань поджелудочной железы, половые железы (семенники и яичники), плацента и гормон-продуцирующие участки желудочно-кишечного тракта. В организме синтезируются и некоторые соединения гормоноподобного действия. Например, исследования гипоталамуса показали, что ряд секретируемых им веществ необходим для высвобождения гормонов гипофиза. Эти «рилизинг-факторы», или либерины, были выделены из различных участков гипоталамуса. Они поступают в гипофиз через систему кровеносных сосудов, соединяющих обе структуры. Поскольку гипоталамус по своему строению не является железой, а рилизинг-факторы поступают, по-видимому, только в очень близко расположенный гипофиз, эти выделяемые гипоталамусом вещества могут считаться гормонами лишь при расширительном понимании данного термина.

В определении того, какие вещества следует считать гормонами и какие структуры эндокринными железами, есть и другие проблемы. Убедительно показано, что такие органы, как печень, могут экстрагировать из циркулирующей крови физиологически малоактивные или вовсе неактивные гормональные вещества и превращать их в сильнодействующие гормоны. Например, дегидроэпиандростерон сульфат, малоактивное вещество, продуцируемое надпочечниками, преобразуется в печени в тестостерон – высокоактивный мужской половой гормон, в большом количестве секретируемый семенниками. Доказывает ли это, однако, что печень – эндокринный орган?

Другие вопросы еще более трудны. Почки секретируют в кровоток фермент ренин, который через активацию ангиотензиновой системы (эта система вызывает расширение кровеносных сосудов) стимулирует продукцию гормона надпочечников – альдостерона. Регуляция выделения альдостерона этой системой весьма схожа с тем, как гипоталамус стимулирует высвобождение гипофизарного гормона АКТГ (адренокортикотропного гормона, или кортикотропина), регулирующего функцию надпочечников. Почки секретируют также эритропоэтин – гормональное вещество, стимулирующее продукцию эритроцитов. Можно ли отнести почку к эндокринным органам? Все эти примеры доказывают, что классическое определение гормонов и эндокринных желез не является достаточно исчерпывающим.

Транспорт гормонов.

Гормоны, попав в кровоток, должны поступать к соответствующим органам-мишеням. Транспорт высокомолекулярных (белковых) гормонов изучен мало из-за отсутствия точных данных о молекулярной массе и химической структуре многих из них. Гормоны со сравнительно небольшой молекулярной массой, такие, как тиреоидные и стероидные, быстро связываются с белками плазмы, так что содержание в крови гормонов в связанной форме выше, чем в свободной; эти две формы находятся в динамическом равновесии. Именно свободные гормоны проявляют биологическую активность, и в ряде случаев было четко показано, что они экстрагируются из крови органами-мишенями.

Значение белкового связывания гормонов в крови не совсем ясно. Предполагают, что такое связывание облегчает транспорт гормона либо защищает гормон от потери активности.

Действие гормонов.

Отдельные гормоны и их основные эффекты представлены ниже в разделе «Основные гормоны человека». В целом, гормоны действуют на определенные органы-мишени и вызывают в них значительные физиологические изменения. У гормона может быть несколько органов-мишеней, и вызываемые им физиологические изменения могут сказываться на целом ряде функций организма. Например, поддержание нормального уровня глюкозы в крови – а оно в значительной степени контролируется гормонами – важно для жизнедеятельности всего организма. Гормоны иногда действуют совместно; так, эффект одного гормона может зависеть от присутствия какого-то другого или других гормонов. Гормон роста, например, неэффективен в отсутствие тиреоидного гормона.

Действие гормонов на клеточном уровне осуществляется по двум основным механизмам: не проникающие в клетку гормоны (обычно водорастворимые) действуют через рецепторы на клеточной мембране, а легко проходящие через мембрану гормоны (жирорастворимые) – через рецепторы в цитоплазме клетки. Во всех случаях только наличие специфического белка-рецептора определяет чувствительность клетки к данному гормону, т.е. делает ее «мишенью». Первый механизм действия, подробно изученный на примере адреналина, заключается в том, что гормон связывается со своими специфическими рецепторами на поверхности клетки; связывание запускает серию реакций, в результате которых образуются т.н. вторые посредники, оказывающие прямое влияние на клеточный метаболизм. Такими посредниками служат обычно циклический аденозиномонофосфат (цАМФ) и/или ионы кальция; последние высвобождаются из внутриклеточных структур или поступают в клетку извне. И цАМФ, и ионы кальция используются для передачи внешнего сигнала внутрь клеток у самых разнообразных организмов на всех ступенях эволюционной лестницы. Однако некоторые мембранные рецепторы, в частности рецепторы инсулина, действуют более коротким путем: они пронизывают мембрану насквозь, и когда часть их молекулы связывает гормон на поверхности клетки, другая часть начинает функционировать как активный фермент на стороне, обращенной внутрь клетки; это и обеспечивает проявление гормонального эффекта.

Второй механизм действия – через цитоплазматические рецепторы – свойствен стероидным гормонам (гормонам коры надпочечников и половым), а также гормонам щитовидной железы (T3 и T4). Проникнув в клетку, содержащую соответствующий рецептор, гормон образует с ним гормон-рецепторный комплекс. Этот комплекс подвергается активации (с помощью АТФ), после чего проникает в клеточное ядро, где гормон оказывает прямое влияние на экспрессию определенных генов, стимулируя синтез специфических РНК и белков. Именно эти новообразованные белки, обычно короткоживущие, ответственны за те изменения, которые составляют физиологический эффект гормона.

Регуляция гормональной секреции

осуществляется несколькими связанными между собой механизмами. Их можно проиллюстрировать на примере кортизола, основного глюкокортикоидного гормона надпочечников. Его продукция регулируется по механизму обратной связи, который действует на уровне гипоталамуса. Когда в крови снижается уровень кортизола, гипоталамус секретирует кортиколиберин – фактор, стимулирующий секрецию гипофизом кортикотропина (АКТГ). Повышение уровня АКТГ, в свою очередь, стимулирует секрецию кортизола в надпочечниках, и в результате содержание кортизола в крови возрастает. Повышенный уровень кортизола подавляет затем по механизму обратной связи выделение кортиколиберина – и содержание кортизола в крови снова снижается.

Секреция кортизола регулируется не только механизмом обратной связи. Так, например, стресс вызывает освобождение кортиколиберина, а соответственно и всю серию реакций, повышающих секрецию кортизола. Кроме того, секреция кортизола подчиняется суточному ритму; она очень высока при пробуждении, но постепенно снижается до минимального уровня во время сна. К механизмам контроля относится также скорость метаболизма гормона и утраты им активности. Аналогичные системы регуляции действуют и в отношении других гормонов.

ОСНОВНЫЕ ГОРМОНЫ ЧЕЛОВЕКА

Гормоны гипофиза

подробно описаны в статье ГИПОФИЗ. Здесь мы лишь перечислим основные продукты гипофизарной секреции.

Гормоны передней доли гипофиза.

Железистая ткань передней доли продуцирует:

– гормон роста (ГР), или соматотропин, который воздействует на все ткани организма, повышая их анаболическую активность (т.е. процессы синтеза компонентов тканей организма и увеличения энергетических запасов).

– меланоцит-стимулирующий гормон (МСГ), усиливающий выработку пигмента некоторыми клетками кожи (меланоцитами и меланофорами);

– тиреотропный гормон (ТТГ), стимулирующий синтез тиреоидных гормонов в щитовидной железе;

– фолликулостимулирующий гормон (ФСГ) и лютеинизирующий гормон (ЛГ), относящиеся к гонадотропинам: их действие направлено на половые железы (см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА).

– пролактин, обозначаемый иногда как ПРЛ, – гормон, стимулирующий формирование молочных желез и лактацию.

Гормоны задней доли гипофиза

– вазопрессин и окситоцин. Оба гормона продуцируются в гипоталамусе, но сохраняются и высвобождаются в задней доле гипофиза, лежащей книзу от гипоталамуса. Вазопрессин поддерживает тонус кровеносных сосудов и является антидиуретическим гормоном, влияющим на водный обмен. Окситоцин вызывает сокращение матки и обладает свойством «отпускать» молоко после родов.

Тиреоидные и паратиреоидные гормоны.

Щитовидная железа расположена на шее и состоит из двух долей, соединенных узким перешейком (см. ЩИТОВИДНАЯ ЖЕЛЕЗА). Четыре паращитовидных железы обычно расположены парами – на задней и боковой поверхности каждой доли щитовидной железы, хотя иногда одна или две могут быть несколько смещены.

Главными гормонами, секретируемыми нормальной щитовидной железой, являются тироксин (Т4) и трийодтиронин (Т3). Попадая в кровоток, они связываются – прочно, но обратимо – со специфическими белками плазмы. Т4 связывается сильнее, чем Т3, и не так быстро высвобождается, а потому он действует медленнее, но продолжительнее. Тиреоидные гормоны стимулируют белковый синтез и распад питательных веществ с высвобождением тепла и энергии, что проявляется повышенным потреблением кислорода. Эти гормоны влияют также на метаболизм углеводов и, наряду с другими гормонами, регулируют скорость мобилизации свободных жирных кислот из жировой ткани. Короче говоря, тиреоидные гормоны оказывают стимулирующее действие на обменные процессы. Повышенная продукция тиреоидных гормонов вызывает тиреотоксикоз, а при их недостаточности возникает гипотиреоз, или микседема.

Другим соединением, найденным в щитовидной железе, является длительно действующий тиреоидный стимулятор. Он представляет собой гамма-глобулин и, вероятно, вызывает гипертиреоидное состояние.

Гормон паращитовидных желез называют паратиреоидным, или паратгормоном; он поддерживает постоянство уровня кальция в крови: при его снижении паратгормон высвобождается и активирует переход кальция из костей в кровь до тех пор, пока содержание кальция в крови не вернется к норме. Другой гормон – кальцитонин – оказывает противоположное действие и выделяется при повышенном уровне кальция в крови. Раньше полагали, что кальцитонин секретируется паращитовидными железами, теперь же показано, что он вырабатывается в щитовидной железе. Повышенная продукция паратгормона вызывает заболевание костей, камни в почках, обызвествление почечных канальцев, причем возможно сочетание этих нарушений. Недостаточность паратгормона сопровождается значительным снижением уровня кальция в крови и проявляется повышенной нервно-мышечной возбудимостью, спазмами и судорогами.

Гормоны надпочечников.

Надпочечники – небольшие образования, расположенные над каждой почкой. Они состоят из внешнего слоя, называемого корой, и внутренней части – мозгового слоя. Обе части имеют свои собственные функции, а у некоторых низших животных это совершенно раздельные структуры. Каждая из двух частей надпочечников играет важную роль как в нормальном состоянии, так и при заболеваниях. Например, один из гормонов мозгового слоя – адреналин – необходим для выживания, так как обеспечивает реакцию на внезапную опасность. При ее возникновении адреналин выбрасывается в кровь и мобилизует запасы углеводов для быстрого высвобождения энергии, увеличивает мышечную силу, вызывает расширение зрачков и сужение периферических кровеносных сосудов. Таким образом, направляются резервные силы для «бегства или борьбы», а кроме того снижаются кровопотери благодаря сужению сосудов и быстрому свертыванию крови. Адреналин стимулирует также секрецию АКТГ (т.е. гипоталамо-гипофизарную ось). АКТГ, в свою очередь, стимулирует выброс корой надпочечников кортизола, в результате чего увеличивается превращение белков в глюкозу, необходимую для восполнения в печени и мышцах запасов гликогена, использованных при реакции тревоги.

Кора надпочечников секретирует три основные группы гормонов: минералокортикоиды, глюкокортикоиды и половые стероиды (андрогены и эстрогены). Минералокортикоиды – это альдостерон и дезоксикортикостерон. Их действие связано преимущественно с поддержанием солевого баланса. Глюкокортикоиды влияют на обмен углеводов, белков, жиров, а также на иммунологические защитные механизмы. Наиболее важные из глюкокортикоидов – кортизол и кортикостерон. Половые стероиды, играющие вспомогательную роль, подобны тем, что синтезируются в гонадах; это дегидроэпиандростерон сульфат, D 4 -андростендион, дегидроэпиандростерон и некоторые эстрогены.

Избыток кортизола приводит к серьезному нарушению метаболизма, вызывая гиперглюконеогенез, т.е. чрезмерное превращение белков в углеводы. Это состояние, известное как синдром Кушинга, характеризуется потерей мышечной массы, сниженной углеводной толерантностью, т.е. сниженным поступление глюкозы из крови в ткани (что проявляется аномальным увеличением концентрации сахара в крови при его поступлении с пищей), а также деминерализацией костей.

Избыточная секреция андрогенов опухолями надпочечника приводит к маскулинизации. Опухоли надпочечника могут вырабатывать также эстрогены, особенно у мужчин, приводя к феминизации.

Гипофункция (сниженная активность) надпочечников встречается в острой или хронической форме. Причиной гипофункции бывает тяжелая, быстро развивающаяся бактериальная инфекция: она может повредить надпочечник и привести к глубокому шоку. В хронической форме болезнь развивается вследствие частичного разрушения надпочечника (например, растущей опухолью или туберкулезным процессом) либо продукции аутоантител. Это состояние, известное как аддисонова болезнь, характеризуется сильной слабостью, похуданием, низким кровяным давлением, желудочно-кишечными расстройствами, повышенной потребностью в соли и пигментацией кожи. Аддисонова болезнь, описанная в 1855 Т.Аддисоном, стала первым распознанным эндокринным заболеванием.

Адреналин и норадреналин – два основных гормона, секретируемых мозговым слоем надпочечников. Адреналин считается метаболическим гормоном из-за его влияния на углеводные запасы и мобилизацию жиров. Норадреналин – вазоконстриктор, т.е. он сужает кровеносные сосуды и повышает кровяное давление. Мозговой слой надпочечников тесно связан с нервной системой; так, норадреналин высвобождается симпатическими нервами и действует как нейрогормон.

Избыточная секреция гормонов мозгового слоя надпочечников (медуллярных гормонов) возникает при некоторых опухолях. Симптомы зависят от того, какой из двух гормонов, адреналин или норадреналин, образуется в большем количестве, но чаще всего наблюдаются внезапные приступы приливов, потливости, тревоги, сердцебиения, а также головная боль и артериальная гипертония.

Тестикулярные гормоны.

Семенники (яички) имеют две части, являясь железами и внешней, и внутренней секреции. Как железы внешней секреции они вырабатывают сперму, а эндокринную функцию осуществляют содержащиеся в них клетки Лейдига, которые секретируют мужские половые гормоны (андрогены), в частности D 4 -андростендион и тестостерон, основной мужской гормон. Клетки Лейдига вырабатывают также небольшое количество эстрогена (эстрадиола).

Семенники находятся под контролем гонадотропинов (см. выше раздел ГОРМОНЫ ГИПОФИЗА). Гонадотропин ФСГ стимулирует образование спермы (сперматогенез). Под влиянием другого гонадотропина, ЛГ, клетки Лейдига выделяют тестостерон. Сперматогенез происходит только при достаточном количестве андрогенов. Андрогены, в частности тестостерон, ответственны за развитие вторичных половых признаков у мужчин.

Нарушение эндокринной функции семенников сводится в большинстве случаев к недостаточной секреции андрогенов. Например, гипогонадизм – это снижение функции семенников, включая секрецию тестостерона, сперматогенез или и то, и другое. Причиной гипогонадизма может быть заболевание семенников, либо – опосредованно – функциональная недостаточность гипофиза.

Повышенная секреция андрогенов встречается при опухолях клеток Лейдига и приводит к чрезмерному развитию мужских половых признаков, особенно у подростков. Иногда опухоли семенников вырабатывают эстрогены, вызывая феминизацию. В случае редкой опухоли семенников – хориокарциномы – продуцируется столько хорионических гонадотропинов, что анализ минимального количества мочи или сыворотки дает те же результаты, что и при беременности у женщин. Развитие хориокарциномы может привести к феминизации.

Гормоны яичников.

Яичники имеют две функции: развитие яйцеклеток и секреция гормонов (см. также РЕПРОДУКЦИЯ ЧЕЛОВЕКА). Гормоны яичников – это эстрогены, прогестерон и D 4 -андростендион. Эстрогены определяют развитие женских вторичных половых признаков. Эстроген яичников, эстрадиол, вырабатывается в клетках растущего фолликула – мешочка, который окружает развивающуюся яйцеклетку. В результате действия как ФСГ, так и ЛГ, фолликул созревает и разрывается, высвобождая яйцеклетку. Разорванный фолликул превращается затем в т.н. желтое тело, которое секретирует как эстрадиол, так и прогестерон. Эти гормоны, действуя совместно, готовят слизистую матки (эндометрий) к имплантации оплодотворенной яйцеклетки. Если оплодотворения не произошло, желтое тело подвергается регрессии; при этом прекращается секреция эстрадиола и прогестерона, а эндометрий отслаивается, вызывая менструацию.

Хотя яичники содержат много незрелых фолликулов, во время каждого менструального цикла созревает обычно только один из них, высвобождающий яйцеклетку. Избыток фолликулов подвергается обратному развитию на протяжении всего репродуктивного периода жизни женщины. Дегенерирующие фолликулы и остатки желтого тела становятся частью стромы – поддерживающей ткани яичника. При определенных обстоятельствах специфические клетки стромы активируются и секретируют предшественник активных андрогенных гормонов – D 4 -андростендион. Активация стромы возникает, например, при поликистозе яичников – болезни, связанной с нарушением овуляции. В результате такой активации продуцируется избыток андрогенов, что может вызвать гирсутизм (резко выраженную волосатость).

Пониженная секреция эстрадиола имеет место при недоразвитии яичников. Функция яичников снижается и в менопаузе, так как запас фолликулов истощается и как следствие падает секреция эстрадиола, что сопровождается целым рядом симптомов, наиболее характерным из которых являются приливы. Избыточная продукция эстрогенов обычно связана с опухолями яичников. Наибольшее число менструальных расстройств вызвано дисбалансом гормонов яичников и нарушением овуляции.

Гормоны плаценты человека.

Плацента – пористая мембрана, которая соединяет эмбрион (плод) со стенкой материнской матки. Она секретирует хорионический гонадотропин и плацентарный лактоген человека. Подобно яичникам плацента продуцирует прогестерон и ряд эстрогенов.

Хорионический гонадотропин (ХГ).

Имплантации оплодотворенной яйцеклетки способствуют материнские гормоны – эстрадиол и прогестерон. На седьмой день после оплодотворения человеческий зародыш укрепляется в эндометрии и получает питание от материнских тканей и из кровотока. Отслоение эндометрия, которое вызывает менструацию, не происходит, потому что эмбрион секретирует ХГ, благодаря которому сохраняется желтое тело: вырабатываемые им эстрадиол и прогестерон поддерживают целость эндометрия. После имплантации зародыша начинает развиваться плацента, продолжающая секретировать ХГ, который достигает наибольшей концентрации примерно на втором месяце беременности. Определение концентрации ХГ в крови и моче лежит в основе тестов на беременность.

Плацентарный лактоген человека (ПЛ).

В 1962 ПЛ был обнаружен в высокой концентрации в ткани плаценты, в оттекающей от плаценты крови и в сыворотке материнской периферической крови. ПЛ оказался сходным, но не идентичным с гормоном роста человека. Это мощный метаболический гормон. Воздействуя на углеводный и жировой обмен, он способствует сохранению глюкозы и азотсодержащих соединений в организме матери и тем самым обеспечивает снабжение плода достаточным количеством питательных веществ; одновременно он вызывает мобилизацию свободных жирных кислот – источника энергии материнского организма.

Прогестерон.

Во время беременности в крови (и моче) женщины постепенно возрастает уровень прегнандиола, метаболита прогестерона. Прогестерон секретируется главным образом плацентой, а основным его предшественником служит холестерин из крови матери. Синтез прогестерона не зависит от предшественников, продуцируемых плодом, судя по тому, что он практически не снижается через несколько недель после смерти зародыша; синтез прогестерона продолжается также в тех случаях, когда у пациенток с брюшной внематочной беременностью произведено удаление плода, но сохранилась плацента.

Эстрогены.

Первые сообщения о высоком уровне эстрогенов в моче беременных появились в 1927, и вскоре стало ясно, что такой уровень поддерживается только при наличии живого плода. Позже было выявлено, что при аномалии плода, связанной с нарушением развития надпочечников, содержание эстрогенов в моче матери значительно снижено. Это позволило предположить, что гормоны коры надпочечников плода служат предшественниками эстрогенов. Дальнейшие исследования показали, что дегидроэпиандростерон сульфат, присутствующий в плазме крови плода, является основным предшественником таких эстрогенов, как эстрон и эстрадиол, а 16-гидроксидегидроэпиандростерон, также эмбрионального происхождения, – основной предшественник еще одного продуцируемого плацентой эстрогена, эстриола. Таким образом, нормальное выделение эстрогенов с мочой при беременности определяется двумя условиями: надпочечники плода должны синтезировать предшественники в нужном количестве, а плацента – превращать их в эстрогены.

Гормоны поджелудочной железы.

Поджелудочная железа осуществляет как внутреннюю, так и внешнюю секрецию. Экзокринный (относящийся к внешней секреции) компонент – это пищеварительные ферменты, которые в форме неактивных предшественников поступают в двенадцатиперстную кишку через проток поджелудочной железы. Внутреннюю секрецию обеспечивают островки Лангерганса, представленные клетками нескольких типов: альфа-клетки секретируют гормон глюкагон, бета-клетки – инсулин. Основное действие инсулина заключается в понижении уровня глюкозы в крови, осуществляемое главным образом тремя способами: 1) торможением образования глюкозы в печени; 2) торможением в печени и мышцах распада гликогена (полимера глюкозы, который организм при необходимости может превращать в глюкозу); 3) стимуляцией использования глюкозы тканями. Недостаточная секреция инсулина или повышенная его нейтрализация аутоантителами приводят к высокому уровню глюкозы в крови и развитию сахарного диабета. Главное действие глюкагона – увеличение уровня глюкозы в крови за счет стимулирования ее продукции в печени. Хотя поддержание физиологического уровня глюкозы в крови обеспечивают в первую очередь инсулин и глюкагон, другие гормоны – гормон роста, кортизол и адреналин – также играют существенную роль.

Желудочно-кишечные гормоны.

Гормоны желудочно-кишечного тракта – гастрин, холецистокинин, секретин и панкреозимин. Это полипептиды, секретируемые слизистой оболочкой желудочно-кишечного тракта в ответ на специфическую стимуляцию. Полагают, что гастрин стимулирует секрецию соляной кислоты; холецистокинин контролирует опорожнение желчного пузыря, а секретин и панкреозимин регулируют выделение сока поджелудочной железы.

Нейрогормоны

– группа химических соединений, секретируемых нервными клетками (нейронами). Эти соединения обладают гормоноподобными свойствами, стимулируя или подавляя активность других клеток; они включают упомянутые ранее рилизинг-факторы, а также нейромедиаторы, функции которых заключается в передаче нервных импульсов через узкую синаптическую щель, отделяющую одну нервную клетку от другой. К нейромедиаторам относятся дофамин, адреналин, норадреналин, серотонин, гистамин, ацетилхолин и гамма-аминомасляная кислота.

В середине 1970-х годов был открыт ряд новых нейромедиаторов, обладающих морфиноподобным обезболивающим действием; они получили название «эндорфины», т.е. «внутренние морфины». Эндорфины способны связываться со специальными рецепторами в структурах головного мозга; в результате такого связывания в спинной мозг посылаются импульсы, которые блокируют проведение поступающих болевых сигналов. Болеутоляющее действие морфина и других опиатов несомненно обусловлено их сходством с эндорфинами, обеспечивающим их связывание с теми же блокирующими боль рецепторами.

ТЕРАПЕВТИЧЕСКОЕ ИСПОЛЬЗОВАНИЕ ГОРМОНОВ

Гормоны использовались первоначально в случаях недостаточности какой-либо из желез внутренней секреции для замещения или восполнения возникшего гормонального дефицита. Первым эффективным гормональным препаратом был экстракт щитовидной железы овцы, примененный в 1891 английским врачом Г.Марри для лечения микседемы. На сегодняшний день гормональная терапия способна восполнить недостаточную секрецию практически любой эндокринной железы; прекрасные результаты дает и заместительная терапия, проводимая после удаления той или иной железы. Гормоны могут использоваться также для стимуляции работы желез. Гонадотропины, например, применяют для стимуляции половых желез, в частности для индукции овуляции.

Кроме заместительной терапии, гормоны и гормоноподобные препараты используются и для других целей. Так, избыточную секрецию андрогена надпочечниками при некоторых заболеваниях подавляют кортизоноподобными препаратами. Другой пример – использование эстрогенов и прогестерона в противозачаточных таблетках для подавления овуляции.

Гормоны могут применяться и как агенты, нейтрализующие действие других медикаментозных средств; при этом исходят из того, что, например, глюкокортикоиды стимулируют катаболические процессы, а андрогены – анаболические. Поэтому на фоне длительного курса глюкокортикоидной терапии (скажем, в случае ревматоидного артрита) нередко дополнительно назначают анаболические средства для снижения или нейтрализации ее катаболического действия.

Часто гормоны применяют как специфические лекарственные средства. Так, адреналин, расслабляющий гладкие мышцы, очень эффективен в случаях приступа бронхиальной астмы. Гормоны используются и в диагностических целях. Например, при исследовании функции коры надпочечников прибегают к ее стимуляции, вводя пациенту АКТГ, а ответ оценивают по содержанию кортикостероидов в моче или плазме.

В настоящее время препараты гормонов начали применяться почти во всех областях медицины. Гастроэнтерологи используют кортизоноподобные гормоны при лечении регионарного энтерита или слизистого колита. Дерматологи лечат угри эстрогенами, а некоторые кожные болезни – глюкокортикоидами; аллергологи применяют АКТГ и глюкокортикоиды при лечении астмы, крапивницы и других аллергических заболеваний. Педиатры прибегают к анаболическим веществам, когда необходимо улучшить аппетит или ускорить рост ребенка, а также к большим дозам эстрогенов, чтобы закрыть эпифизы (растущие части костей) и предотвратить таким образом чрезмерный рост.

При трансплантации органов используют глюкокортикоиды, которые уменьшают шансы отторжения трансплантата. Эстрогены могут ограничивать распространение метастазирующего рака молочной железы у больных в период после менопаузы, а андрогены применяются с той же целью до менопаузы. Урологи используют эстрогены, чтобы затормозить распространение рака предстательной железы. Специалисты по внутренним болезням обнаружили, что целесообразно использовать кортизоноподобные соединения при лечении некоторых типов коллагенозов, а гинекологи и акушеры применяют гормоны при терапии многих нарушений, прямо не связанных с гормональным дефицитом.

ГОРМОНЫ БЕСПОЗВОНОЧНЫХ

Гормоны беспозвоночных изучены главным образом на насекомых, ракообразных и моллюсках, причем многое в этой области все еще остается неясным. Иногда отсутствие сведений о гормонах того или иного вида животных объясняется просто тем, что у данного вида нет специализированных эндокринных желез, а отдельные группы клеток, секретирующих гормоны, с трудом поддаются обнаружению.

Вероятно, любая функция, регулируемая гормонами в организме позвоночных, сходным образом регулируется и у беспозвоночных. У млекопитающих, например, нейромедиатор норадреналин учащает сердцебиение, а у краба Cancer pagurus и омара Homarus vulgaris ту же роль играют нейрогормоны – биологически активные вещества, вырабатываемые нейросекреторными клетками нервной ткани. Обмен кальция в организме регулируется у позвоночных гормоном паращитовидных желез, а у некоторых беспозвоночных – гормоном, который вырабатывается особым органом, расположенным в грудном отделе тела. Гормональной регуляции подчинены и многие другие функции у беспозвоночных, в том числе метаморфоз, движение и перегруппировка пигментных гранул в хроматофорах, интенсивность дыхания, созревание половых клеток в гонадах, формирование вторичных половых признаков и рост тела.

Метаморфоз.

Наблюдения над насекомыми выявили роль гормонов в регуляции метаморфоза, причем показано, что ее осуществляют несколько гормонов. Мы остановимся на двух важнейших гормонах-антагонистах. На каждом из тех этапов развития, которые сопровождаются метаморфозом, нейросекреторные клетки головного мозга насекомых вырабатывают т.н. мозговой гормон, стимулирующий в проторакальной (переднегрудной) железе синтез стероидного гормона, индуцирующего линьку, – экдизона. В то самое время, когда в организме насекомого синтезируется экдизон, в прилежащих телах (corpora allata) – двух небольших железах, расположенных в голове насекомого – вырабатывается т.н. ювенильный гормон, который подавляет действие экдизона и обеспечивает после линьки следующую личиночную стадию. По мере роста личинки ювенильного гормона вырабатывается все меньше и, наконец, количество его оказывается уже недостаточным для того, чтобы препятствовать линьке. Например, у бабочек уменьшение содержания ювенильного гормона приводит к тому, что последняя личиночная стадия после линьки превращается в куколку.

Взаимодействие гормонов, регулирующих метаморфоз, продемонстрировано в ряде экспериментов. Известно например, что клоп Rhodnius prolixus в ходе нормального жизненного цикла до превращения во взрослую форму (имаго) претерпевает пять линек. Если, однако, обезглавить личинки, то у выживших метаморфоз окажется укороченным и из них разовьются хотя и миниатюрные, но в остальном нормальные взрослые формы. То же явление можно наблюдать и у личинки бабочки цекропиевого шелкопряда (Samia cecropia), если удалить у нее прилежащие тела и тем самым исключить синтез ювенильного гормона. В этом случае, так же, как у Rhodnius, метаморфоз будет укороченным и взрослые формы окажутся меньше обычных. И наоборот, если от молодой гусеницы цекропиевого шелкопряда пересадить прилежащие тела личинке, уже готовой превратиться в имаго, то метаморфоз затянется и личинки будут крупнее обычных.

Ювенильный гормон удалось недавно синтезировать и теперь его можно получать в больших количествах. Опыты показали, что если воздействовать гормоном в высоких концентрациях на яйца насекомых или на иной стадии их развития, когда этот гормон в норме отсутствует, то возникают серьезные нарушения метаболизма, приводящие к гибели насекомого. Подобный результат позволяет надеяться, что синтетический гормон окажется новым и весьма эффективным средством борьбы с насекомыми-вредителями. По сравнению с химическими инсектицидами, ювенильный гормон имеет ряд важных преимуществ. Он не оказывает влияния на жизнедеятельность других организмов, в отличие от пестицидов, серьезно нарушающих экологию целых регионов. Не менее важно и то, что к любому пестициду у насекомого рано или поздно может развиться устойчивость, но маловероятно, чтобы у какого-нибудь насекомого развилась устойчивость к своим собственным гормонам.

Размножение.

Эксперименты свидетельствуют о том, что гормоны участвуют в размножении насекомых. У комаров, например, они регулируют как образование яиц, так и их откладку. Когда самка комара переваривает поглощенную ею порцию крови, стенки желудка и брюшка растягиваются, что служит пусковым сигналом для передачи импульсов в мозг. Примерно через час особые клетки в верхней части мозга выделяют в гемолимфу («кровь»), циркулирующую в полости тела, гормон, стимулирующий секрецию другого гормона двумя железами, расположенными в области пережима, или шейки. Этот второй гормон стимулирует не только созревание яиц, но и запасание в них питательных веществ. У зрелых самок комара в светлые часы суток под воздействием света на соответствующие центры нервной системы выделяется специальный гормон, стимулирующий откладку яиц, что обычно происходит после полудня, т.е. еще в дневное время. При искусственной смене «ночи на день» этот порядок может быть нарушен: в опытах с комаром Aedes aegypti (переносчиком желтой лихорадки) самки откладывали яйца ночью, если их держали ночью в освещенных садках, а днем – в затемненных. У большинства видов насекомых откладку яиц стимулирует гормон, вырабатываемый определенным участком прилежащих тел.

У тараканов, кузнечиков, клопов и мух созревание яичников зависит от одного из гормонов, секретируемых прилежащими телами; в отсутствие этого гормона яичники не созревают. В свою очередь яичники вырабатывают гормоны, влияющие на прилежащие тела. Так, при удалении яичников наблюдалась дегенерация прилежащих тел. Если же такому насекомому пересаживали зрелые яичники, то спустя некоторое время обычный размер прилежащих тел восстанавливался.

Половые различия.

Многим беспозвоночным, в том числе и насекомым, свойствен половой диморфизм, т.е. различие морфологических признаков у мужских и женских особей. У комаров, например, самка питается кровью млекопитающих и ее ротовой аппарат приспособлен к прокалыванию кожи, а самцы питаются нектаром или растительными соками и хоботок у них более длинный и тонкий. У пчел половой диморфизм отчетливо коррелирует с особенностями поведения и судьбы каждой касты особей: самцы (трутни) служат лишь для размножения и после брачного полета погибают, самки представлены двумя кастами – маткой (царицей), которая имеет развитую половую систему и участвует в размножении, и стерильными рабочими пчелами. Наблюдения и эксперименты, проводимые над пчелами и другими беспозвоночными, показывают, что развитие половых признаков регулируется гормонами, которые вырабатываются половыми железами.

У многих ракообразных мужской половой гормон (андроген) вырабатывается андрогенной железой, находящейся в семяпроводе. Этот гормон необходим для формирования семенников и придаточных (копулятивных) половых органов, а также для развития вторичных половых признаков. При удалении андрогенной железы меняются и форма тела, и функции, так что кастрированный самец становится в конце концов похожим на самку.

Изменение окраски.

Способность к изменению окраски тела свойственна многим беспозвоночным, в том числе насекомым, ракообразным и моллюскам. Палочник Dixippus на зеленом фоне кажется зеленым, а на более темном напоминает палочку, как бы покрытую корой. У палочников, как и у многих других организмов, изменение окраски тела в зависимости от окраски фона – одно из главных средств защиты, позволяющее животному ускользнуть от внимания хищника.

В организме беспозвоночных, способных к изменению окраски тела, вырабатываются гормоны, стимулирующие движение и перегруппировку гранул пигментов. Как в светлое, так и в темное время суток, зеленый пигмент распределен в хроматофорах равномерно, поэтому в дневные часы палочник окрашен в зеленый цвет. Гранулы же коричневого и красного пигментов в условиях освещенного фона сгруппированы по краям клетки. При наступлении темноты или снижении освещенности происходит рассеивание гранул темных пигментов и насекомое приобретает окраску коры деревьев. Реакция хроматофоров вызывается нейрогормоном, выделяемым мозгом в ответ на изменение освещенности фона. Под действием света этот гормон поступает в кровь и доставляется ею к клетке-мишени. Другие гормоны насекомых, регулирующие перемещение пигментов, поступают в кровь из прилежащих тел и из ганглия (нервного узла), расположенного под пищеводом.

Ретинальные пигменты сложного глаза ракообразных тоже перемещаются в ответ на изменение освещенности, и эта адаптация к свету подчинена гормональной регуляции. Кальмары и другие моллюски также имеют пигментные клетки, реакция которых на свет регулируется гормонами. У кальмара хроматофоры содержат синий, пурпурный, красный и желтый пигменты. При соответствующей стимуляции его тело может принимать различную окраску, что дает ему возможность мгновенно приспосабливаться к окружающей среде.

Механизмы, управляющие перемещением пигментов в хроматофорах, различны. У осьминога Eledone в хроматофорах имеются волокна, способные сокращаться в ответ на действие тирамина – гормона, вырабатываемого слюнной железой. При их сокращении область, занимаемая пигментами, расширяется и тело осьминога темнеет. При расслаблении волокон в ответ на действие другого гормона, бетаина, эта область сокращается и тело светлеет.

Иной механизм перемещения пигментов обнаружен в клетках кожи насекомых, в клетках сетчатки некоторых ракообразных и у холоднокровных позвоночных. У этих животных пигментные гранулы связаны с высокополимерными белковыми молекулами, которые способны переходить из состояния золя в гель и обратно. При переходе в состояние геля объем, занимаемый белковыми молекулами, уменьшается и пигментные гранулы собираются в центре клетки, что наблюдается в темновой фазе. В световой фазе белковые молекулы переходят в состояние золя; это сопровождается увеличением их объема и рассеиванием гранул по всей клетке.

ГОРМОНЫ ПОЗВОНОЧНЫХ

У всех позвоночных гормоны одинаковы или очень сходны, а у млекопитающих это сходство настолько велико, что некоторые гормональные препараты, полученные от животных, используются для инъекций человеку. Иногда, впрочем, тот или иной гормон действует у разных видов по-разному. Например, вырабатываемый яичниками эстроген влияет на рост перьев цыплят породы леггорн и не влияет на рост перьев у голубей.

Не все исследования, посвященные роли гормонов, позволяют сделать достаточно четкие выводы. Противоречивы, например, данные, касающиеся роли гормонов в миграциях птиц. У некоторых видов, в частности у зимнего юнко, гонады весной с увеличением продолжительности дня увеличиваются, и это наводит на мысль, что именно гормоны инициируют миграцию. Однако у других видов птиц такой реакции не наблюдается. Неясна также роль гормонов в таком явлении, как зимняя спячка у млекопитающих.

Тироксин,

тиреоидный гормон позвоночных, вырабатываемый щитовидной железой, регулирует основной обмен и процессы развития. Эксперименты показали, что у пресмыкающихся, например, периодические линьки, по крайней мере частично, регулируются тироксином.

У земноводных функция тироксина лучше всего изучена на лягушках. Головастики, в пищу которых добавляли экстракт щитовидной железы, переставали расти и рано превращались в маленьких взрослых лягушек, т.е. у них наблюдался ускоренный метаморфоз. При удалении же у них щитовидной железы метаморфоза не происходило и они так и оставались головастиками.

Важную роль играет тироксин в жизненном цикле и другого земноводного – тигровой амбистомы. Неотеническая (способная к размножению) личинка амбистомы – аксолотль – обычно не претерпевает метаморфоза, оставаясь на личиночной стадии. Однако, если добавить в пищу аксолотля небольшое количество экстракта бычьей щитовидной железы, то метаморфоз произойдет и из аксолотля разовьется маленькая черная дышащая воздухом амбистома.

Водный и ионный баланс.

У земноводных и млекопитающих диурез (мочеотделение) стимулируется гидрокортизоном – гормоном, секретируемым корой надпочечников. Противоположное – угнетающее – влияние на диурез оказывает другой гормон, который вырабатывается гипоталамусом, поступает в заднюю долю гипофиза, а из него в системный кровоток.

У всех позвоночных, за исключением рыб, имеются паращитовидные железы, секретирующие гормон, способствующий поддержанию баланса кальция и фосфора. По-видимому, у костистых рыб функцию паращитовидных желез выполняют какие-то иные структуры, но точно это пока не установлено. Другие участвующие в метаболизме гормоны, регулирующие баланс ионов калия, натрия и хлора, секретируются корой надпочечников и задней долей гипофиза. Гормоны коры надпочечников повышают содержание ионов натрия и хлора в крови у млекопитающих, пресмыкающихся и лягушек.

Инсулин.

Два гормона, регулирующие содержание сахара в крови – инсулин и глюкагон, – вырабатываются специализированными клетками поджелудочной железы, составляющими островки Лангерганса. Различают четыре типа клеток: альфа, бета, C и D. Доля этих клеточных типов в разных группах животных варьирует, а у ряда земноводных имеются только бета-клетки. Некоторые виды рыб не имеют поджелудочной железы и островковая ткань обнаруживается у них в стенке кишечника; есть также виды, у которых она находится в печени. Известны рыбы, у которых скопления островковой ткани представлены в виде отдельных эндокринных желез. Секретируемые островковыми клетками гормоны – инсулин и глюкагон – выполняют, по-видимому, одну и ту же функцию у всех позвоночных.

Гормоны гипофиза.

Гипофиз секретирует разнообразные гормоны; их действие хорошо известно по наблюдениям над млекопитающими, но ту же роль играют они и во всех других группах позвоночных. Если, например, впавшей в зимнюю спячку самке лягушки сделать инъекцию экстракта из передней доли гипофиза, это приведет к стимуляции созревания яиц и она начнет откладывать икру. У африканского ткачика вырабатываемый передней долей гипофиза гонадотропный гормон инициирует секрецию семенниками мужского полового гормона. Этот гормон стимулирует расширение выносящих канальцев семенника, а также образование пигмента меланина в клюве и как следствие потемнение клюва. У того же африканского ткачика вырабатываемый задней долей гипофиза лютеинизирующий гормон инициирует синтез пигментов в некоторых перьях и секрецию прогестерона желтым телом яичника.

Изменение окраски тела холоднокровных животных, например хамелеонов и некоторых рыб, регулируется еще одним гипофизарным гормоном, а именно меланоцит-стимулирующим гормоном (МСГ), или интермедином. Имеется этот гормон также и у птиц и млекопитающих, но какого-либо влияния на пигментацию он в большинстве случаев не оказывает. Присутствие МСГ в организме птиц и млекопитающих, где это гормон не играет, по-видимому, заметной роли, позволяет сделать ряд предположений по поводу эволюции позвоночных. См. также ЭНДОКРИННАЯ СИСТЕМА.

Догель В.А. Зоология беспозвоночных. М., 1981
Теппермен Дж., Теппермен Х. Физиология обмена веществ и эндокринной системы. М., 1989
Хадорн Э., Венер. Р. Общая зоология. М., 1989
Албертс Б., Брей Д., Льюис Дж., Рэфф М., Робертс К., Уотсон Дж. Молекулярная биология клетки, т. 2. М., 1994
Физиология человека, под ред. Шмидта Р., Тевса Г., тт. 2–3. М., 1996

источник