Биосинтез стероидных гормонов в яичниках и надпочечниках

Биосинтез стероидных гормонов в яичниках и надпочечниках

Яичники, подобно надпочечникам, синтезируют из холестерина все три класса стероидных гормонов — эстрогены, прогестерон и андрогены. Однако в отличие от надпочечников яичники не способны продуцировать глюкокортикоиды и минералокортикоиды в связи с отсутствием ферментов 21-гидроксилазы и 11b-гидроксилазы.

Выработка стероидных гормонов в стероидпродуцирующих эндокринных железах происходит по одному и тому же базовому пути с использованием экзогенного холестерина (холестерина плазмы крови), за исключением печени и слизистой оболочки кишечника, способных синтезировать эндогенный холестерин из ацетилкоэнзима А. Основным источником холестерина для стероидогенеза в яичнике являются ЛПНП плазмы крови. Скоростьопределяющей стадией стероидогенеза является транспортировка холестерина из цитозоля к внутренней мембране митохондрий.

Этот процесс катализируется ЛГ-индуцируемым митохондриальным ферментом, называемым стероидогенным активным регуляторным протеином StAR (steroidogenic acute regulatory protein). Ген StAR локализован на хромосоме 8 (локус 8р11.2) и кодирует 285-аминокислотный белок-предшественник, от которого после транспортировки в митохондрию отщепляется 25 аминокислот.

Нонсенс-мутации гена StAR, приводящие к преждевременной остановке синтеза белка вследствие образования неполноценных стоп-кодонов, считаются причиной липоидной врожденной гиперплазии надпочечников, при которой происходит внутриклеточное накопление липидов, нарушающее стероидогенез.

Стероидные гормоны яичника синтезируются как в интерстициальных, так и в фолликулярных клетках. Структурный каркас холестерина состоит из трех шестиугольных углеродных колец и одного пятиугольного углеродного кольца, к которому крепится боковая цепь. Две метильные группы, играющие важную роль, присоединяются также в положениях 18 и 19. Прогестины и кортикостероиды (С21-стероиды группы прегнана) синтезируются посредством частичного расщепления боковой цепи (т.е. десмолазной реакции).

Андрогены (С19-стероиды группы андростана) синтезируются путем полного отщепления боковой цепи. Эстрогены (С18-стероиды группы эстрана) — путем ароматизации одного из трех шестиугольных углеродных колец с образованием фенольной группы и потери метильной группы в положении 19.

На первом этапе стероидогенеза происходит превращение холестерина в прегненолон посредством гидроксилирования углерода в положениях 20 и 22 с последующим расщеплением боковой цепи. Из прегненолона стероидные гормоны образуются по одному из двух главных путей. По прегненолоновому (d5) пути синтезируются андрогены и эстрогены (прегненолон -> 170Н-прегненолон -> дегидроэпиандростерон (ДГЭА) -> тестостерон -> эстроген). По прогестероновому (Д4) пути образуются андрогены и эстрогены (прегненолон -> прогестерон -> 170Н-прогестерон -> андроген -> эстроген). В надпочечниках по d4-пути синтезируются минералокортикоиды и глюкокортикоиды.

P.S. ЭР — эндоплазматический ретикулум

К ферментам, участвующим во внутриклеточном синтезе стероидных гормонов, относятся пять гидроксилаз, две дегидрогеназы, редуктаза и ароматаза. Гидроксила-зы и ароматаза принадлежат к группе генов семейства цитохрома Р450 (CYP). Эти ферменты существуют как в митохондриях, так и в эндоплазматическом ретикулуме.

Из девяти указанных выше ферментов четыре ключевых фермента регулируют основные этапы стероидогенеза: CYP11A (P450scc) — фермент, катализирующий превращение холестерина в прегненолон; 3b-HSD или 3ba-гидроксистероиддегидрогеназа (ГСД) превращает прегненолон в прогестерон; CYP17 (Р450с17) — гидроксилаза, превращающая прегненолон в андрогены; CYP19 (P450arom) — ароматаза, превращающая андрогены в эстрогены. Большинство реакций являются необратимыми. Некоторые обратимые реакции (обозначены на рисунке двунаправленной стрелкой) зависят от наличия кофактора (например, соотношения НАДФ/НАДФ-Н).

Спектр продуцируемых клеткой гормонов зависит от ее происхождения, а также от наличия или отсутствия присущих данной ткани стероидогенных ферментов. Так, поскольку в коре надпочечников отсутствует фермент 17b-ГСД, то синтез андрогенов здесь ограничивается ДГЭА и андростендионом. В яичках ЛГ контролирует активность 17b-ГСД и продукцию тестостерона.

Стероидпродуцирующие клетки яичника (гранулезные, текальные, желтое тело) содержат весь спектр ферментов для синтеза стероидных гормонов. В текальных клетках ЛГ также контролирует активность 17b-ГСД и синтез андростерона, в то время как активность CYP19 (P450arom) в гранулезных клетках контролирует ФСГ, а значит, и продукцию эстрадиола. Такие взаимосвязи являются основой функционирования системы двух клеток и двух гонадотропинов. Процесс ароматизации происходит в эндоплазматическом ретикулуме.

В каждом из двух типов клеток количество тех или иных ферментов зависит от стадии развития фолликула. Ферменты CYP11A и 3b-ГСД экспрессируются как в текальных, так и в гранулезных клетках антральных и преовуляторных фолликулов, а также в лютеинизиро-ванных гранулезных и текальных клетках желтого тела. В отличие от них, CYP17 (Р450с17) экспрессируется только в текальных клетках антральных и преовуляторных фолликулов и в желтом теле.

источник

Схема биосинтеза стероидных гормонов

Схема биосинтеза стероидных гормонов в половых железах и надпочечниках сходны. В коре имеется недостаток ферментов ароматазы и 17- кеторедуктазы. Необходимых для выработки половых гормонов (процесс останавливается на андростендионе). В половых железах имеется недостаток 21-гидроксилазы и 11-гидроксилазы, необходимых для образования ГК и минералкортикоидов.

Эстрогены

Эстрадиол — — вырабатывается в яичниках (в оболочке и гранулезных клетках фолликулов), при беременности – в плаценте, в постменопаузе – в коре надпочечников и периферической жировой ткани (ароматизация андрогенов) в большей части в виде эстрона. Транспорт – в крови 60% в комплексе с альбумином, остальная часть – с ГСПГ, 2-3% — в несвязанной форме.

Эстрон – синтезируется в печени и жировой ткани из андрогенов.

Биологическая функция эстрогенов:

созревание влагалища, матки, фаллопиевых труб

стимуляция роста эндометрия, секреции слизи влагалища и шейки матки,

развитие протоков и стромы молочных желез распределение жира по женскому типу

закрытие эпифизов и прекращение линейного роста (у обоих полов!)

участие в метаболизме липидов, кальция, процессе свертывания крови

стимуляция синтеза транспортных белков (ТСГ, транскортина, ГСПГ)

Прогестерон

Кора надпочечников (промежуточный продукт синтеза стероидных гормонов)

Транспорт: 1-2% — в свободном состоянии, остальное количество – в комплексе с альбумином, транскортином, тироксин связывающим глобулином (меньше).

Метаболизируется в печени, выводится с мочой в виде сульфата или глюкуронида прегнадиола.

Физиологическая функция

Максимальный синтез – за 7 дней до начала менструации. Биологическая роль – подготовка стимулированного эстрогенами эндометрия к имплантации оплодотворенной яйцеклетки, ↑ развитие железистой ткани молочной железы. Пирогенный эффект – повышение базальной температуры тела (на 0,2-0,5 0 ) при овуляции.

Если произошло оплодотворение, синтез прогестерона продолжается желтым телом беременности до появления плаценты на 8-ой неделе развития плода → начинается синтез прогестерона плацентой. Функция – снижение сократительной способности матки для

Эстрадиол у мужчин

Определяется в плазме здоровых мужчин в небольших концентрациях: 1/3 секретируется яичками, а остальная часть образуется в результате метаболизма тестостерона в жировой ткани и печени.

Гонадная ось у эмбрионов

У эмбриона, вне зависимости от генетического пола, имеются анатомические предпосылки для развития внутренних проводящих структур и наружных гениталий любого пола.

Эмбриональное развитие мужской

Эмбриональное развития мужской особи — фетальные яички под действием ХГТ, ЛГ и ФСГ продуцируют тестостерон и ТМС. Тестостерон способствует преобразованию вольфова протока во внутренние половые протоки мужчины, а ТМС способствует редукции мюллерова протока и предотвращает запрограммированное развитие женских половых протоков. В течение около 6 месяцев после рождения яички продолжают секретировать тестостерон под влиянием ГнРГ, а затем содержание гонадотропинов и тестостерона падает до очень низких значений, которые сохраняются до полового созревания.

Эмбриональное развитие

Эмбриональное развитие женской особи

– при отсутствии ингибирующего влияния тормозной мюллеровой субстанции яичек происходит развитие женских половых протоков, то есть специального стимулирующего гормонального сигнала не требуется. Содержание гонадотропинов очень низкое вплоть до полового созревания.

Гонадная ось в период полового

В пубертатном периоде гонадная ось возобновляет свою функцию.

1. Первым измеряемым параметром начала полового созревания как у мальчиков, так и у девочек, является

повышение содержания ДГЭА-сульфата →

появляются подмышечные и лобковые волосы.

2. Несколько позже большую роль начинают играть андрогены гонад, особенно у мальчиков → у обоих полов усиленное апокриновое потоотделение в подмышечных областях и повышенная функция сальных желез .

3. Эстрогены (образуются на этом этапе за счет ароматизации андрогенов).

источник

Биосинтез гормонов. Биосинтез стероидных гормонов

Синтез стероидных гормонов осуществляется под ферментативным контролем в клетках стероидогенных желез главным образом мезодермального происхождения. У позвоночных животных к ним относятся кора надпочечников, клетки Лейдига семенников, фолликулы и желтое тело яичников, а также плацента млекопитающих. Гормональная форма витамина D3 достраивается из экзогенного витамина в печени и почках. Экдизоны насекомых образуются в большинстве случаев в проторакальных железах, а у представителей некоторых видов — в кольцевой железе личинок. Крустэкдизоны ракообразных синтезируются в Y-органах.

Биосинтез стероидных гормонов происходит из общего для них предшественника холестерина — С27-А5-стероида, который поступает в стероидогенные клетки из крови в составе липопротеидов разной плотности или синтезируется в них из ацетата. Большая часть холестерина в эндокринных клетках содержится в составе липидных капель, локализованных в цитоплазме, в форме эфиров с жирными кислотами. Липидные капли представляют собой депо холестерина, откуда он может быть мобилизован с помощью специфических эстераз.

Биогенез главных стероидных гормонов позвоночных (кортикостероидов;, прогестинов, андрогенов и эстрогенов) характеризуется множественностью путей, варьирующихся у животных разных видов (Юдаев и др., 1976). Схематически его можно представить в виде трех общих и начальных этапов: 1) освобождения холестерина из липидных капель и перехода его в митохондрии, где неэстерифицированный холестерин образует комплексы с белками внутренней митохондриальной мембраны; 2) укорочения боковой цепи холестерина на 6 углеродных атомов (С27 -С21) с образованием С21Д5-стероида прегненолона — ключевого предшественника гормонов, покидающего митохондрии; 3) переброски двойной связи из кольца В в кольцо А (Д5-»Д4) и отщепления водорода у С3 с обрзованием Д4-3-кетостероидов типа прогестерона, осуществляемых в микросомах клетки. Общие начальные этапы биосинтеза стероидных гормонов представлены далее.

Все указанные этапы контролируются в основном соответствующими тройными гормонами гипофиза (АКТГ, ЛГ). Те же гормоны контролируют и проникновение в стероидогенные клетки из крови холестерина в составе липопротеидов.

Очевидно, указанные процессы — лимитирующие биосинтез стероидных гормонов.

Уже на стадии прегненолона или вслед за 3 в-ол-дегидрогеназной реакцией происходит ветвление общего русла биосинтеза стероидных гормонов на основные две линии. Одна из них, начинающаяся с 17 а-гидроксилирования субстратов, приводит к образованию кортизола, андрогенов и эстрогенов. Прогестины (С21) могут быть одними из предшественников представителей всех других групп стероидов данной линии, а андрогены (С 19), в свою очередь, становятся обязательными предшественниками эстрогенов (С18).

Другая линия стероидного биосинтеза, начинающаяся с 21-гидроксилирования субстратов, приводит к образованию кортикостерона и альдостерона, причем кортикостерон может быть предшественником альдостерона. Наличие того или иного пути стероидогенеза в клетках стероидпродуцирующих желез, а следовательно, и структура конечного продукта определяются присутствием в этих клетках соответствующих ферментных систем. Следует отметить, что гидроксилирование в 21-м и 17-м положениях может осуществляться и на стадии холестерина

Характерная особенность биосинтеза стероидных гормонов — ряд последовательно протекающих процессов гидроксилирования молекул стероидов. Они происходят в митохондриях (20а- и 22в-гидроксилирование холестерина, 11в- и 18-гидроксилирование предшественников кортикостероидов) и микросомах (17 а- и 21-гидроксилирование прегненолона и прогестерона, 19-гидроксилирова-ние андрогенов). Эти процессы осуществляются специальными ферментными системами стероидогенных клеток, относящихся к гидррксилазам или оксидазам смешанного типа (Мэсон, 1957). Гидроксилазы обеспечивают недыхательный, гидроксилирующий транспорт электронов от восстановленного кофактора НАДФН к кислороду, который приводит в конечном счете к включению одного из его атомов в гидроксильную группу, присоединяемую к стероиду:

Для 3в-ол-дегидрогеназной реакции в качестве кофактора необходим окисленный НАД, а кислород воздуха не нужен.

источник

Раздел 3. Тема 3. Биосинтез стероидов и стероидных гормонов.

В коре надпочечников образуются из холестерина стероидные гормоны: кортикостероиды (глюкокортикоиды и минералокортикоиды) и половые гомоны (женские и мужские).

В расчете на 1 грамм ткани кора надпочечников занимает второе место в организме после головного мозга по содержанию холестерина и первое место — по содержанию аскорбиновой кислоты (витамина С), необходимой для превращения холестерола в стероидные гормоны.

Мужские половые гормоны – андрогены (от греч. «andros» – мужской) – тестостерон, дигидротестостерон, андростерон. Синтезируются в клетках Лейдига семенников, предстательной железе, коре надпочечников. Небольшое количество андрогенов образуется у женщин в яичниках. Путь биосинтеза андрогенов в семенниках и коре надпочечников одинаков. Предшественником андрогенов служит холестерол, который поступает из плазмы в составе ЛПНП, либо синтезируется в самих железах из ацетил-КоА.

Сначала происходит отщепление боковой цепи холестерола и образование прегненолона – это скорость-лимитирующая реакция. Однако, в отличие от аналогичной реакции, протекающей в надпочечниках, эта стадия стимулируется ЛГ (а не АКТГ). ЛГ, связываясь с рецептором плазматической мембраны клеток Лейдига, активирует аденилатциклазу, увеличивая внутриклеточную концентрацию цАМФ, что вызывает активацию фермента, который расщепляет боковую цепь холестерола между С-20 и С-22.

Превращение прегненолона в тестостерон катализируется пятью микросомальными ферментами и может протекать двумя путями: через образование дегидроэпиандростерона или через образование прогестерона (что, по-видимому, преобладает в семенниках человека).

Суточная секреция тестостерона у мужчин составляет в норме примерно 5 мг. Гормон циркулирует в крови в связанном с белками плазмы состоянии: альбумином (40%) и специфически связывающим половые гормоны β-глобулином (называемым секс-гормонсвязывающим глобулином, СГСГ). Лишь 2% от общего количества гормона в крови транспортируется в свободном виде, и именно такие молекулы проявляют биологическую активность.

В семенных канальцах, предстательной железе, коже, наружных половых органах тестостерон служит предшественником более активного андрогена — дигидротестостерона. В этом превращении участвует примерно 4% тестостерона, у которого происходит восстановление двойной связи кольца и кетогруппы при участии цитоплазматического фермента — NADPH-зависимой 5α-редуктазы. Семенники человека секретируют в сутки до 50-100 мкг дигидротестостерона. Однако большее количество гормона — следствие периферических превращений, и суммарная суточная секреция дигидротестостерона составляет 400 мкг, что почти в 10 раз меньше уровня секреции тестостерона.

В некоторых периферических тканях небольшое количество тестостерона превращается в эстрадиол. В качестве побочных продуктов клетки Лейдига также постоянно секретируют эстрадиол и прогестерон, хотя роль этих гормонов в развитии и поддержании функций размножения и формирования полового поведения у мужчин до настоящего времени не выяснена.

Мишени андрогенов – половые органы и неполовые органы (мышцы, мозг, кости, почки, хрящи, гортань, кожа, жировая ткань).

Женские половые гомоны. К ним относят эстрогены18-стероиды) и прогестины21-стероиды). Эстрогены образуются путем ароматизации андрогенов. В яичниках из тестостерона образуется эстрадиол; в коре надпочечников из андростендиона синтезируется эстрон; в печени и плаценте эстрон может превращаться в эстриол.

Наиболее активный прогестин – прогестерон – синтезируется в яичниках, семенниках и надпочечниках. У женщин в лютеиновую фазу менструального цикла желтое тело секретирует основное количество прогестерона. Во время беременности прогестерон секретируется фетоплацентарным комплексом.

Эстрадиол в небольших количествах синтезируется в организме мужчин в результате метаболизма тестостерона в печени и жировой ткани и в яичках.

Мишени женских половых гормонов: половые органы, молочные железы и неполовые органы (мозг, кости, хрящи, гортань, кожа, почки, жировая ткань).

Функции половых гормонов.

Функции мужских половых гормонов:

Физиологическое действие андрогенов различно в разные периоды жизни организма:

· пренатальный период: под действием андрогенов происходит дифференциация соматического пола (трансформация вольфовых протоков в семенные пузырьки и семявыносящие протоки; формирование наружных половых органов), маскулинизация мозга, половая дифференцировка гипоталамуса;

· период полового созревания: стимулируют развитие половых органов и половых желез (простаты, семенных пузырьков, придатков яичка); индукция сперматогенеза; приводят к скачкообразному увеличению линейных размеров тела, скелетных мышц, росту костей, но одновременно способствуют и остановке роста, так как стимулируют закрытие эпифизарных зон роста костей. Вызывают изменение структуры кожи и волос (рост волос по мужскому типу), снижение тембра голоса вследствие утолщения голосовых связок и увеличения объема гортани, стимулируют секрецию сальных желез. Действуя на мозг, вызывают формирование мужского типа сексуальной ориентации и мужской психики.

· у взрослых мужчин: андрогены обеспечивают сперматогенез и нормальную функцию половых органов; положительный азотистый баланс; ренотропный эффект (увеличение размеров, массы, кровоснабжения почек); активацию эритропоэза.

Андрогены обладают значительным анаболическим действием, выражающимся в стимуляции синтеза белка во всех тканях, особенно в мышцах.

Женские половые гормоны ответственны за формирование вторичных половых признаков во время полового созревания и поддерживают функции женской репродуктивной системы. Эстрогены стимулируют развитие тканей, участвующих в размножении:

— в матке увеличивают рост миометрия и пролиферацию эндометрия, повышают ее тонус;

— во влагалище увеличивают число слоев клеток и ороговение эпителия;

— вызывают рост эпителия и мышечной ткани маточных труб;

— в молочных железах вызывают пролиферацию молочных протоков.

Действие на неполовые органы

Действуя на мозг, эстрогены обеспечивают формирование полового инстинкта и психического статуса женщины.

Эстрогены оказывают анаболическое действие (стимулируют синтез белка в тканях-мишенях) и обеспечивают положительный азотистый баланс.

В эпифизах костей эстрогены обеспечивают синтез коллагена и отложение кальция и фосфора у девочек. В период полового созревания способствуют окостенению эпифизарных зон роста костей, формированию характерного «женского» скелета, развитию хрящей гортани и формированию женского тембра голоса. Обеспечивают рост волос по женскому типу.

В печени индуцируют синтез специфических белков:

— транспортных белков тиреоидных и половых гормонов;

— факторов свертывания крови (II, YII, IX и X);

— липопротеинов высокой плотности (при этом тормозят образование липопротеинов низкой плотности), что приводит к снижению содержания холестерола в крови. В связи с этим у женщин реже, чем у мужчин, развивается атеросклероз.

Прогестерон действует только в период функционирования желтого тела. Он обеспечивает:

— торможение сокращений матки и маточных труб;

— подготовку стимулированного эстрогенами эндометрия к имплантации оплодотворенной яйцеклетки;

— снижает сексуальное влечение.

Прогестерон может оказывать действие и на ЦНС, вызывая особенности поведения в предменструальный период.

Дата добавления: 2018-11-11 ; просмотров: 313 | Нарушение авторских прав

источник

Схема 36. Биосинтез стероидов в яичнике

Эстрон и эстрадиол являются гормонами, которые образуются в яичнике. Биологически наиболее активен эстрадиол, 95% которого образуется в фолликуле, и уровень его в крови является показателем созревания фолликула. Эстриол – метаболит эстрадиола и эстрона, обладающий наименьшей биологической активностью. Секретируемые в кровь эстрогены конъюгируются глобулином, связывающим половые гормоны, и в меньшей степени альбуминами крови. Выше указывалось, что этот глобулин имеет повышенное сродство к андрогенам. Уровень глобулина, связывающего половые гормоны, в сыворотке крови женщин почти в 2 раза выше по сравнению с его концентрацией в крови мужчин. Эстрогены и их метаболиты конъюгируются в печени с глюкуроновой и серной кислотами и экскретируются с желчью и мочой.

Влияние эстрогенов на гипоталамо-гипофизарную систему обеспечивает цикличность выделения гонадотропинов.

Эстрогены угнетают секрецию ФСГ и ЛГ, а также снижают ответ передней доли гипофиза на действие гонадолиберина.

Кроме влияния на половые органы и гипоталамус, эстрогены обладают анаболическим свойством, усиливают обмен костной ткани и ускоряют созревание костей скелета, с чем связано прекращение роста при наступлении полового созревания. В больших дозах эстрогены способствуют задержке натрия и воды в организме вплоть до развития отеков. Влияют также на обмен липидов, снижая уровень холестерина в крови. Длительное применение эстрогенов способствует тромбообразованию в венах, а также увеличивает частоту рака эндометрия. Эстрогены не являются канцерогенами, но, инициируя процессы пролиферации эндометрия, вероятно, создают условия для действия неизвестных пока канцерогенов и злокачественного перерождения тканей.

Прогестерон. Секретируется желтым телом, а также корой надпочечников и яичками, где используется как предшественник для биосинтеза кортикостероидов и андрогенов. В сыворотке крови прогестерон связывается транскортином, который, как известно, связывает глюкокортикоиды. По данным некоторых исследований, способность прогестерона связываться транскортином даже выше, чем кортикостероидов. Следует отметить, что синтетические кортикостероиды, такие, как дексаметазон, вообще не связываются транскортином. В печени прогестерон связывается глюкуроновой кислотой, конъюгаты экскретируются с мочой.

Прогестерон, являясь анатагонистом эстрогенов, ограничивает их пролиферативный эффект в эндометрии, миометрии и эпителии влагалища, вызывая стимуляцию секреции железами эндометрия секрета, содержащего гликоген, уменьшая строму подслизистого слоя, т.е. вызывает характерные изменения эндометрия, необходимые для имплантации оплодотворенной яйцеклетки. Прогестерон снижает тонус мышц матки, вызывает их расслабление, оказывает пирогенное влияние. Увеличение его содержания в крови совпадает с повышением базальной температуры тела, которая является индикатором овуляции. Кроме того, прогестерон вызывает пролиферацию и развитие молочных желез и в период беременности способствует угнетению процесса овуляции. Обладает небольшим катаболическим эффектом, при длительном применении способстует появлению акне, олигоменореи, задерживает натрий, хлориды и воду в организме.

В последние годы показано, что яичники являются местом секреции полипептидного гормона релаксина, который принимает важное участие в период родов, вызывая релаксацию связок таза и расслабление шейки матки, а также увеличивает синтез гликогена и задержку воды в миометрии, уменьшая при этом его сократительную способность. Он секретируется клетками гранулезы желтого тела. В период обычного менструального цикла секреция его повышается сразу после пика высвобождения ЛГ и остается определяемым в период менструации. В течение беременности циркулирующий уровень релаксина выше в конце I триместра по сравнению со II и III триместром.

Помимо релаксина, в яичнике секретируются ингибин и активин, которые участвуют в регуляции секреции ФСГ и модулируют секрецию стероидных гормонов клетками яичника.

Андрогены. У женщин секретируются клетками стромы яичников, главным образом в виде андростендиона, причем в надпочечниках его образуется в 3 раза больше, чем в яичниках. Андростендион в периферических тканях конвертируется в тестостерон. В яичниках образуется в незначительных количествах также тестостерон, дигидротестостерон, дегидроэпиандростерон. Приблизительно около 1/4 тестостерона, который секретируется в организме женщины, образуется в яичниках. Остальное его количество секретируется надпочечниками или образуется в тканях на периферии путем конверсии из андростендиона. В этой связи потеря вторичного оволосения у женщин является индикатором надпочечниковой, а не яичниковой недостаточности. Повышение секреции андрогенов яичниками наблюдается при таких патологических состояниях, как синдром поликистозных яичников и арренобластома.

Биологическое действие стероидов, в том числе половых, в тканях-мишенях связано с наличием в них специфических рецепторов. Стероиды путем диффузии проходят мембрану клетки и в цитозоле комплексируются со специфическими рецепторами. Цитоплазматические рецепторы присутствуют не во всех, а только в клетках тканей, чувствительных к данному виду гормона. Рецепторно-стероидный комплекс, образование которого зависит от нескольких факторов, включая температуру, перемещается в ядро, где на хроматине имеются специальные участки, связывающие эти комплексы. Последнее взаимодействие ведет к синтезу большого количества специфических РНК и соответствующих белков, росту и развитию соответствущих органов и тканей (молочные железы, матка и др.).

Количество молекул рецепторов для различных стероидных гормонов колеблется от 5000 до 20 000 на клетку. Рецепторы к эстрогенам связывают многие естественные и синтетические эстрогенные стероиды с одинаковой аффинностью. Считается, что рецепторы к эстрогенам и прогестерону представляют собой две субъединицы, каждая из которых связывает молекулу гормона. Каждая из таких субъединиц А и В взаимодействует с хроматином и обеспечивает дальнейшую активацию специфических генов и РНК-полимераз.

Биологическое действие гормона связано не только с количественными колебаниями его в сыворотке крови, но и с состоянием рецепторного звена, причем количество рецепторов подвержено значительным колебаниям. Экспериментальные исследования показали, что у новорожденных крыс ткани-мишени содержат незначительное количество рецепторов к эстрогенам. На 10-й день жизни количество рецепторов возрастает, и после этого срока введение экзогенных эстрогенов вызывает их увеличение. Эстрогены стимулируют образование рецепторов не только к эстрогенам, но и к прогестерону. Количество рецепторов не только зависит от уровня циркулирующего в крови гормона, но и находится под генетическим контролем. Так, полное отсутствие рецепторов к андрогенам наблюдается при синдроме тестикулярной феминизации.

При некоторых состояниях, проявляющихся резистентностью к андрогенам, имеется нормальное комплексирование андрогенов с цитозольным рецептором, но связывание гормонорецепторного комплекса на хроматине ядра нарушено. Действие различных антигормонов связано со способностью этих веществ взаимодействовать со специфическим рецептором. Так, синтетические антиэстрогены (нафоксидин и тамоксифен) связываются с цитоплазматическим рецептором, и такой рецепторно-гормональный комплекс, транслоцируясь в ядро, связывается с хроматином на более продолжительное время (дни и недели), чем при комплексировании с эстрадиолом.

Гормональная регуляция менструального цикла. Секреция эстрогенов и прогестерона находится под контролем гонадотропных гормонов. Уже на самых ранних стадиях развития фолликула зависит от стимулирующего влияния ФСГ. Гонадотропины стимулируют созревание, разрыв фолликула и его трансформацию в желтое тело. Образование эстрогенов стимулируется преимущественно ФСГ, однако при этом необходим определенный фон секреции ЛГ, без чего ФСГ малоактивен. Функция желтого тела находится преимущественно под влиянием ЛГ. Гипоталамический контроль секреции гонадотропных гормонов был рассмотрен в главе I. Секреция гонадотропных гормонов находится под контролем не только ЦНС и гипоталамуса. Половые гормоны посредством положительной или отрицательной обратной связи также принимают важное участие в регуляции секреции гонадотропинов.

Существуют 3 типа секреции гонадотропинов: тонический, циклический и эпизодический, или пульсирующий. Тоническая, или базальная, секреция гонадотропинов регулируется посредством отрицательной обратной связи, а циклическая – механизмом положительной обратной связи с участием эстрогенов. Пульсирующая секреция обусловлена активностью гипоталамуса и высвобождением гонадолиберина. Развитие фолликула в первой половине цикла осуществляется благодаря тонической секреции ФСГ и ЛГ. Повышение секреции эстрадиола приводит к торможению образования ФСГ. Развитие фолликула зависит от количества рецепторов к ФСГ в клетках гранулезной зоны, причем синтез этих рецепторов в свою очередь стимулируется эстрогенами.

Таким образом, ФСГ приводит к синтезу в определенном фолликуле эстрогенов, которые, увеличивая количество рецепторов к ФСГ, способствуют накоплению ФСГ (путем связывания его рецепторами), дальнейшему созреванию фолликула и увеличению секреции эстрадиола. Другие фолликулы в это время подвергаются атрезии. Концентрация эстрадиола в крови достигает масимума в предовуляторный период, что приводит к высвобождению большого количества гонадолиберина и последующего пика высвобождения ЛГ и ФСГ. Предовуляторное повышение ЛГ и ФСГ стимулирует разрыв граафова пузырька и овуляцию.

Оставшаяся гранулезоклеточная ткань гипертрофируется и гиперплазируется, превращаясь в желтое тело, которое начинает секретировать прогестерон. Эта фаза, продолжительность которой составляет 13±1 день, носит название лютеиновой. Уровень прогестерона увелчивается в 10-20 раз по сравнению с фолликулярной фазой и достигает максимума на 20-25-й день цикла. Если не произошло оплодотворения яйцеклетки, секреция прогестерона резко уменьшается за 1-2 дня до начала менструации. Во время менструации наблюдается дальнейшее снижение уровня прогестерона и эстрадиола в крови, что приводит к стимуляции секреции ФСГ и ЛГ и началу нового цикла.

Повышение уровня ФСГ стимулирует развитие сразу нескольких первичных фолликулов (10-15), но посредством внутрияичникового саморегулирующегося механизма наступает созревание лишь одного и одновременная атрезия других фолликулов. В том случае, если предовуляторное повышение эстрадиола не приводит к высвобождению гонадолиберина и последующей секреции ЛГ и ФСГ, происходит так называемый ановуляторный цикл. Следует отметить, что одновременно с секрецией эстрадиола увеличивается образование 17a-гидроксипрогестерона клетками внутреннего слоя граафова пузырька, который вместе с эстрадиолом способствует циклической секреции гонадотропинов.

Под влиянием эстрогенов в фолликулярной фазе цикла в эндометрии происходят пролиферативные процессы (фаза пролиферации) – разрастание желез, стромы и сосудов, которые постепенно восполняют отторгнувшийся функциональный слой эндометрия. Во второй (лютеиновой) фазе цикла под влиянием прогестерона в эндометрии развиваются секреторные процессы (фаза секреции), которые характеризуются тем, что железы эндометрия начинают вырабатывать секрет, содержащий мукоид, глюкоген, необходимый для имплантации оплодотворенного яйца. В этот период под влиянием высокого уровня прогестерона повышается базальная температура тела. В случае отсутствия оплодотворенной яйцеклетки наступает менструация, которая продолжается 3-7 дней.

Необходимо отметить, что созревание фолликула и его трансформация в желтое тело осуществляются не только под влиянием ФСГ и ЛГ. Нормальная реакция яичников на ФСГ и ЛГ происходит при наличии определенной секреции катехоламинов и образования простагландинов F и E.

Яичники, таким образом, секретируют 3 класса стероидов: эстрогены, андрогены и прогестины. Фолликул яичника является местом образования гормонов и андрогены продуцируются клетками theca interna, которые экспрессируют 17a-гидроксилазу цитохрома Р450. Этот фермент необходим для конверсии прегненолона в 17a-гидроксипрегненолон и дегидроэпиандростерон и для конверсии прогестерона в 17a-гидроксипрогестерон. В клетках зернистой оболочки (клетки гранулезного слоя) экспрессируется фермент – ароматаза цитохрома Р450, необходимая для конверсии образующихся андрогенов в эстрогены. В клетках внутренней и зернистой оболочки экспрессируется два фермента: 1) фермент 20,22 десмолаза, участвующий в отщеплении боковой цепи в молекуле холестерина и конверсии ее в прегненолон и 2) 3b-гидроксистероидная дегидрогеназа, необходимая для конверсии прегненолона в прогестерон и дегидроэпиандростерона в андростендион. Гонадотропины (ФСГ и ЛГ) регулируют секрецию всех яичниковых стероидов в течение менструального цикла.

Как показано исследованиями последних лет, в реализации биологических эффектов гонадотропинов участвуют несколько факторов роста: ИФР-I (инсулиноподобный фактор роста -I), трансформирующий фактор роста-a и b, фактор роста фибробластов, эпидермальный фактор роста.

Кроме того, в последние годы установлено, что жидкость, находящаяся в полости созревающего фолликула, содержит несколько пептидных гормонов, участвующих в сложных процессах регуляции созревания яйцеклетки, овуляции и функциональной активности желтого тела. Одним из таких белковых гормонов является ингибин, угнетающий секрецию ФСГ. Ингибин состоит из двух почти гомологичных субъединиц (a- и b-субъединицы) и их различная комбинация представлена в ингибине А (a и bА) и ингибине В (a и bВ). Как показали D.M. Robertson и соавт. (1997), мол.м. ингибина А 33-36 кD, а ингибина В -50-66 кD.

Активины, как и ингибины, относятся к семейству трансформирующего фактора роста-b, они также были изолированы из фолликулярной жидкости и секретируются лютеальными и клетками зернистого слоя. Активины оказывают биологическое действие в различных тканях. В яичниках они снижают образование андрогенов, прогестерона и активность ароматазы.

Фоллистатин является гликопротеидом и также был изолирован из фолликулярной жидкости и подобно ингибину уменьшает высвобождение ФСГ в культуре гонадотропных клеток гипофиза. Кроме того, он имеет высокую аффинность к связыванию активина и менее выраженную к связыванию ингибина. Установлено, что фоллистатин и активин А являются компонентами аутокринно-паракринной системы фолликула и участвуют в регуляции различных функций клеток внутренней оболочки граафова пузырька.

источник