Биотехнология гормон роста человека

Биосинтез соматотропина и других гормонов человека. Получение интерферонов

Биосинтез соматотропина и других гормонов человека

Гормон роста человека, или соматотропин, синтезируется в головном мозге человека в передней доли гипофиза. Впервые он был выделен из трупного материала и очищен в 1963 г. При недостатке соматотропина развивается гипофизарная карликовость, частота встречаемости которой оценивается от 7 до 10 случаев на миллион человек.

Гормон обладает видовой специфичностью, т. е. в отличие от инсулина гормоны роста животных не имеют активности в организме человека. Следовательно, единственным средством излечения гипофизарной карликовости является гормон гипофиза, который выделяли из трупов. Исследования показали, что при внутримышечном введении соматотропина в дозах 10 мг на 1 кг массы в течение года по три инъекции в неделю дает увеличение роста примерно на 8-18 см в год.

Больные дети четырех-пяти лет при непрерывном лечении догоняли в росте своих сверстников к половой зрелости (14-16 лет). Если учесть тот факт, что из одного трупа можно получить 4-6 мг соматотропина, то можно понять, что лечение этого заболевания природным соматотропином — дело совершенно безнадежное. Помимо недостатка препарата возникли и другие проблемы, связанные с гетерогенностью гормона, выделяемого из трупного материала.

Существовала также опасность, что гипофизарный материал заражен медленно развивающимися вирусами. Такие вирусы обладают необычайно длительным инкубационным периодом, поэтому дети, получавшие препарат, нуждались в многолетнем медицинском наблюдении.

Гормон роста человека, синтезированный в специально сконструированных клетках бактерий, имеет очевидные преимущества: он доступен в больших количествах, его препараты являются биохимически чистыми и свободны от вирусных загрязнений.

Биосинтез соматотропина (состоящего из 191-го аминокислотного остатка) специально сконструированными бактериями на основе кишечной палочки был осуществлен фирмой «Генентек». Поскольку при синтезе ДНК на и-РНК получается ген, кодирующий предшественник соматотропина, не расщепляющийся в бактериальных клетках с образованием активного гормона, то поступили следующим образом: на 1 этапе клонировали двунитевую ДНК-копию и-РНК и расщеплением рестрикционными эндонуклеазами получили последовательность, которая кодирует всю аминокислотную последовательность гормона, кроме 23-х первых аминокислот. Затем клонировали синтетический полинуклеотид, соответствующий аминокислотам от 1-й до 23-й. Далее два фрагмента объединили вместе и «подстроили» в плазмиду E. coli, после чего клетки бактерии начали синтезировать этот гормон.

К 1980 г. были закончены клинические испытания препарата и тесты на токсичность и были начаты массовые эксперименты на детях, близких по возрасту к половой зрелости. Результаты были обнадеживающими, и синтетический соматотропин с 1982 г. начал производиться в промышленном масштабе.

Еще один гормон, в-эндорфин — опиат мозга, состоящий из 31-й аминокислоты, — был синтезирован в генетически сконструированных клетках кишечной палочки. В 1980 г. австралийский ученый Шайн и американские ученые Феттес, Лэн и Бакстер успешно клонировали ДНК, кодирующую в-эндорфин, в клетках E. ooli и получили этот полипептид в виде слитного белка с ферментом в-галактозидазой. На первом этапе они клонировали фрагмент ДНК, полученный в результате обратной транскрипции и-РНК, кодирующей в-эндорфин, и далее встраивали его в плазмиду E .coli за геном в-галактозидазы, при этом получили гибридный белок, состоящий из в-галактозидазы и в-эндорфина; далее ферментативно отщепляли в-галактозидазу, получая биологически активный в-эндорфин.

Получение интерферонов

Еще одним замечательным достижением генной инженерии является синтез интерферона.

Впервые интерферон был получен в 1957 г. в Национальном институте медицинских исследований вблизи Лондона. Это белок, который выделяется в очень низких количествах клетками животных и человека при попадании в организм вирусов и направлен на борьбу с ними. Первые же исследования выявили высокую биологическую активность интерферона при лечении гриппа, гепатита и даже раковых заболеваний (подавляет размножение аномальных клеток).

Интерферон, как и соматотропин, обладает видовой специфичностью: интерфероны животных неактивны в организме человека и даже отторгаются им.

В организме человека вырабатывается несколько видов интерферонов: лейкоцитарный (а), фибробластный (Р) и иммунный (у) (Т-лимфоцитарный).

Природные интерфероны получают из крови человека с крайне низким выходом: в 1978 г. в Центральной лаборатории здравоохранения в Хельсинки (в то время мировой лидер в получении лейкоцитарного интерферона) из 50-ти тысяч литров крови было получено 0,1 г чистого интерферона.

Процесс получения интерферонов в основных чертах был одинаков для всех типов клеток, выращиваемых в культурах и образующих интерферон. Клетки крови заражали вирусом Сендай и через 24 ч фильтровали на суперцентрифуге. В надосадочной жидкости содержался грубый препарат интерферона, который подвергали хроматографической очистке.

Стоимость препарата была очень велика — 400 г интерферона стоил 2,2 млрд долларов. Однако перспективность фармакологического его использования (в том числе против четырех видов рака) заставляла искать новые пути его получения, в первую очередь с помощью генной инженерии.

В январе 1980 г. был получен интерферон человека в генетически сконструированных клетках кишечной палочки. Исходная трудность при этих методах заключалась в том, что и-РНК интерферонов мало даже в лейкоцитах, стимулированных заражением вирусов, и в том, что выходы были очень низкие: сообщалось о получении 1-2 молекул интерферона на одну бактериальную клетку.

В 1981 г. фирме «Генентек» удалось сконструировать рекомбинантную ДНК, кодирующую у-интерферон, и ввести ее в геном бактерий, дрожжей и даже клетки млекопитающих, и они стали способными синтезировать интерферон с большим выходом — 1 л культуры клеток дрожжей содержал 1 млн единиц интерферона (единица интерферона соответствует такому его количеству, которое защищает 50 % клеток в культуре от заражения вирусом). Процесс был осуществлен следующим образом: исследователи выделили смесь молекул и-РНК из лимфоцитов человека, получили молекулы соответствующих ДНК-копий и ввели их в клетки E. coli. Далее были отобраны бактерии, продуцирующие интерферон.

Получение иммуногенных препаратов и вакцин

Другая область применения генной инженерии связана с получением новых эффективных, безопасных и дешевых вакцин.

Вакцины — одно из самых значительных достижений медицины, их использование к тому же чрезвычайно эффективно с экономической точки зрения. В последние годы разработке вакцин стали уделять особое внимание. Это обусловлено тем, что до настоящего времени не удалось получить высокоэффективные вакцины для предупреждения многих распространенных или опасных инфекционных заболеваний.

Повышенный интерес к вакцинам возник после того, как была установлена роль патогенных микроорганизмов в развитии тех заболеваний, которые ранее не считали инфекционными. Например, гастриты, язва желудка и двенадцатиперстной кишки, злокачественные новообразования печени (вирусы гепатита В и С).

Поэтому в последние 10-15 лет правительства многих стран стали принимать меры, направленные на интенсивную разработку и производство принципиально новых вакцин.

Используемые сегодня вакцины можно разделить в зависимости от методов их получения на следующие типы:
— живые аттенуированные вакцины;
— инактивированые вакцины;
— вакцины, содержащие очищенные компоненты микроорганизмов (протеины или полисахариды);
— рекомбинантные вакцины, содержащие компоненты микроорганизмов, полученные методом генной инженерии

Технологию рекомбинантных ДНК применяют также для создания живых ослабленных вакцин нового типа, достигая аттенуации путем направленной мутации генов, кодирующих вирулентные протеины возбудителя заболевания. Эту же технологию используют и для получения живых рекомбинантных вакцин, встраивая гены, кодирующие иммуно-генные протеины, в живые непатогенные вирусы или бактерии (векторы), которые и вводят человеку.

Принцип применения ДНК-вакцин заключается в том, что в организм пациента вводят молекулу ДНК, содержащую гены, кодирующие иммуногенные белки патогенного микроорганизма. ДНК-вакцины называют иначе генными или генетическими.

Для получения ДНК-вакцин ген, кодирующий продукцию иммуногенного протеина какого-либо микроорганизма, встраивают в бактериальную плазмиду. Кроме гена, кодирующего вакцинирующий протеин, в плазмиду встраивают генетические элементы, которые необходимы для экспрессии («включения») этого гена в клетках эукариотов, в том числе человека, для обеспечения синтеза белка. Такую плазмиду вводят в культуру бактериальных клеток, чтобы получить большое количество копий.

Затем плазмидную ДНК выделяют из бактерий, очищают от других молекул ДНК и примесей. Очищенная молекула ДНК и служит вакциной. Введение ДНК-вакцины обеспечивает синтез чужеродных протеинов клетками вакцинируемого организма, что приводит к последующей выработке иммунитета против соответствующего возбудителя. При этом плазмиды, содержащие соответствующий ген, не встраиваются в ДНК хромосом человека.

ДНК-вакцины обладают рядом преимуществ по сравнению с традиционными вакцинами:
— способствуют выработке антител к нативной молекуле вирусных протеинов;
— способствуют выработке цитотоксических Т-лимфоцитов;
— могут избирательно воздействовать на различные субпопуляции Т-лимфоцитов;
— способствуют формированию длительного иммунитета;
— устраняют риск инфицирования.

источник

Биотехнологическое получение соматотропина

Автор: Пользователь скрыл имя, 30 Октября 2011 в 12:23, реферат

Описание работы

Полипептиды — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке.

Содержание

1. Введение
2. Получение соматотропина
3. Производство инсулина
4. Получение интерферонов
5. Заключение
6. Список испоьзованных источников

Работа содержит 1 файл

СРМ 8.docx

2. Получение соматотропина

6. Список испоьзованных источников

Полипептиды — высокомолекулярные органические вещества, состоящие из соединённых в цепочку пептидной связью альфа-аминокислот. В живых организмах аминокислотный состав белков определяется генетическим кодом, при синтезе в большинстве случаев используется 20 стандартных аминокислот. Множество их комбинаций дают большое разнообразие свойств молекул белков. Кроме того, аминокислоты в составе белка часто подвергаются посттрансляционным модификациям, которые могут возникать и до того, как белок начинает выполнять свою функцию, и во время его «работы» в клетке. Часто в живых организмах несколько молекул белков образуют сложные комплексы, например, фотосинтетический комплекс.

Так же как и другие биологические макромолекулы (полисахариды, липиды) и нуклеиновые кислоты, белки — необходимые компоненты всех живых организмов, они участвуют в большинстве жизненных процессов клетки. Белки осуществляют обмен веществ и энергетические превращения. Белки входят в состав клеточных структур — органелл, секретируются во внеклеточное пространство для обмена сигналами между клетками, гидролиза пищи и образования межклеточного вещества.

Следует отметить, что классификация белков по их функции достаточно условна, потому что у эукариот один и тот же белок может выполнять несколько функций. Хорошо изученным примером такой многофункциональности служит лизил-тРНК-синтетаза — фермент из класса аминоацил-тРНК синтетаз, который не только присоединяет лизин к тРНК, но и регулирует транскрипцию нескольких генов[27]. Многие функции белки выполняют благодаря своей ферментативной активности. Так, ферментами являются двигательный белок миозин, регуляторные белки протеинкиназы, транспортный белок натрий-калиевая аденозинтрифосфатаза и др.

Структура гормона роста человека. Соматотропины разной видовой принадлежности, обладая различиями в химической структуре, иногда довольно значительными, тем не менее проявляют четкую структурную гомологию. Все изученные соматотропины млекопитающих, в том числе человека, построены из одной полипептидной цепи, состоящей из 191 аминокислотного остатка. Они содержат по одному остатку триптофана и четыре остатка полуцистина. Два дисульфидных мостика (в соматотропине человека между остатками Цис54-Цис165 и ЦИС182-ЦИС189) формируют две петли полипептидной цепи — большую, включающую центральный участок аминокислотной последовательности, и малую на С-концевом участке.

Пространственная структура соматотропинов характеризуется высокой степенью упорядоченности. Высокое содержание в составе соматотропинов нелолярных аминокислот обуславливает их большую склонность к образованию в растворе димеров и более крупных агрегатов [5].

Отмечая в целом эволюционную консервативность соматотропина в ряду млекопитающих, которая сочетается с консервативностью его биологической функции, следует сказать, однако, что в этом ряду несколько особняком стоит соматотропин человека. Сохраняя схему строения, общую для других млекопитающих, гормон человека отличается аминокислотной последовательностью от изученных соматотропинов животных на 34-35%. Этим может объясняться неэффективность соматотропинов животного происхождения как стимуляторов роста при введении людям.

Вместе с тем при сравнении аминокислотных последовательностей соматотропинов человека и различных животных во всех этих белках легко выявляются участки, почти идентичные по структуре. Высокая эволюционная консервативность отдельных участков полипептидной цепи может свидетельствовать об их принципиально важной функциональной роли как носителей информации о специфической функции гормонального белка.

Гормон роста, или соматотропный гормон (СТГ), продуцируется специализированными клетками гипофиза — соматотрофами. Содержание соматотропного гормона в одном гипофизе человека составляет около 5 мг и по крайней мере на порядок превышает содержание других гормонов.

Биосинтез и секреция соматотропного гормона находятся под сложным контролем, включающим регуляцию в первую очередь гипоталамическими факторами: ингибирующую регуляцию соматостатином и стимулирующую СТГ-рилизинг фактором, а также гормонами — трийодтиронином и глюкокортикоидами, опиоидными пептидами и т.д.

Секреция соматотропного гормона зависит также от концентрации в плазме крови метаболитов, в регуляции обмена которых участвует СТГ, увеличивается в условиях дефицита энергетических субстратов, а также во время сна и в стрессовых ситуациях.

Продуцируемый гипофизом соматотропный гормон отличается высокой гетерогенностью, являющейся результатом как альтернативного сплайсинга мРНК соматотропного гормона, так и посттрансляционных модификаций — протеолиза, фосфорилирования, гликозилирования, димеризации и олигомеризации. При стимуляции секреции гормона все эти формы высвобождаются из гипофиза в циркуляцию и через 30 мин более 50% соматотропного гормона присутствует в плазме крови в мономерной форме, 27% — в димерной и менее 20% — в олигомерной.

Среди мономерных форм соматотропного гормона доминирует 22 кдальтон СТГ (83%), в меньших количествах присутствует 20 кдальтон СТГ (11%) и около 6% составляют различные кислые формы гормона. Таким образом, реакция организма на соматотропный гормонаявляется результатом суммарного действия белков, несколько различающихся по физико-химическим, биологическим и иммунологическим свойствам [1].

Технология получения гормона роста. Несмотря на большой прогресс, достигнутый в исследовании соматотропных гормонов человека и животных, механизм их действия на молекулярном уровне изучен недостаточно. Отсутствие данных о точной пространственной структуре гормонов этой группы затрудняет исследования их взаимодействия с рецепторами, ограничивает возможности изучения структурно-функциональных взаимоотношений различных участков полипептидной цепи, не позволяет в полной мере использовать достижения белковой инженерии для создания аналогов соматотропинов.

Рекомбинантный соматотропин, получивший название соматрем, стал вторым биосинтетическим фармацевтическим препаратом. СТГ, биологически чистый и свободный от вирусных загрязнений, впервые был получен в 1980 году фирмой «Genentech». Гормон, синтезированный в генетически сконструированных клетках кишечной палочки, отличается от гормона, выделенного из гипофиза, дополнительным остатком метионина на NН2 – конце молекулы.

На первом этапе клонировали двунитевую ДНК-копию мРНК и расщеплением рестрикционными эндонуклеазами получили последовательность, которая кодирует всю аминокислотную последовательность гормона, за исключением первых 23 аминокислот. Затем клонировали синтетический полипептид, соответствующий аминокислотам от 1-й до 23-й. Далее два фрагмента объединяли, затем «подстроили» к паре промоторов (промотор – специфическая последовательность в ДНК, необходимая для инициации транскрипции РНК-полимеразы) и участку связывания рибосом. Конечный выход гормона составил 2,4 млг на 1 мл культуры E.cjli (100000 молекул гормона на клетку). СТГ, синтезированный в бактериях, обладал нужной м.м. и не связан с каким-либо бактериальным белком, от которого его необходимо было отщеплять.

Изменяя аминокислотную последовательность СТГ посредством модификации кодирующего его гена, в бактериальных клетках можно синтезировать аналоги гормона, очень важные для изучения активных участков молекулы и этиологии карликовости на молекулярном уровне.

Используя методы рекомбинантных ДНК, можно синтезировать и другие факторы роста и факторы дифференцировки тканей, выделив вначале их мРНК, затем получив соответствующие гены. Это относится к соматомедину А, стимулирующему фиксацию серы в хряще, образование которого индуцируется соматотропином.

В 1982 году выделен и синтезирован полипептид, содержащий из 44 аминокислотных остатков, обладающий полной биологической активностью гипоталамического ризилинг- фактора соматотропина (СТГ-РФ). Введение СТГ-РФ способно компенсировать недостаток соматотропина. Примнение СТГ-РФ возможно не только для лечения гипофизарной карликовости, но и при некоторых формах диабета и для ускорения регенерации тканей у людей, получивших сильные ожоги.

Весь технологический цикл состоит из пяти функционально различных этапов:

2) первичная очистка белка;

3) хроматографическая очистка;

4) изготовление лекарственной формы;

5) анализ качества субстанции и лекарственной формы соматогена.

Важной особенностью технологического процесса является обеспечение апирогенности при проведении хроматографической очистки белка.

Неотъемлемой составной частью каждого технологического цикла промышленного производства является проведение сложного комплекса анализов качества продукта. В основе объема и номенклатуры этих анализов лежат соответствующие рекомендации ВОЗ.

Инсули́н (от лат. insula — остров) — гормон пептидной природы, образуется в бета-клетках островков Лангерганса поджелудочной железы . Оказывает многогранное влияние на обмен практически во всех тканях.

Основная функция инсулина – обеспечивать проницаемость клеточных мембран для молекул глюкозы. В упрощенном виде можно сказать, что не только углеводы, но и любые питательные вещества в конечном счете расщепляются до глюкозы, которая и используется для синтеза других содержащих углерод молекул, и является единственным видом топлива для клеточных энергостанций – митохондрий. Без инсулина проницаемость клеточной мембраны для глюкозы падает в 20 раз, и клетки умирают от голода, а растворенный в крови избыток сахара отравляет организм.

Нарушение секреции инсулина вследствие деструкции бета-клеток — абсолютная недостаточность инсулина — является ключевым звеном патогенеза сахарного диабета 1-го типа . Нарушение действия инсулина на ткани — относительная инсулиновая недостаточность — имеет важное место в развитии сахарного диабета 2-го типа .

История открытия инсулина связана с именем русского врача И.М. Соболева (вторая половина 19 века), доказавшего, что уровень сахара в крови человека регулируется специальным гормоном поджелудочной железы.

В 1922 году инсулин, выделенный из поджелудочной железы животного, был впервые введен десятилетнему мальчику, больному диабетом. результат превзошел все ожидания, и уже через год американская фирма «Eli Lilly» выпустила первый препарат животного инсулина.

После получения первой промышленной партии инсулина в последующие несколько лет пройден огромный путь его выделения и очистки. В результате гормон стал доступен для больных сахарным диабетом 1 типа.

В 1935 году датский исследователь Хагедорн оптимизировал действие инсулина в организме, предложив пролонгированный препарат.

Первые кристаллы инсулина были получены в 1952 году, а в в1954 году английский биохимик Г.Сенджер расшифровал структуру инсулина. Развитие методов очистки гормона от других гормональных веществ и продуктов деградации инсулина позволили получиь гомогенный инсулин, называемый однокомпонентным.

В начале 70-х г.г. советскими учеными А.Юдаевым и С. Швачкиным был предложен химический синтез инсулина, однако осуществление данного синтеза в промышленном масштабе было дорогостоящим и нерентабельным.

источник

Получение гормона роста с использованием методов биотехнологии

Структура гормона роста человека. Характеристика пространственной структуры соматотропинов. Биосинтез и секреция соматотропного гормона, его мономерные формы. Получение гормона роста в биотехнологии, главная особенность технологического процесса.

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по здравоохранению

и социальному развитию РФ

Гоу ВПО «Самарский Государственный

Медицинский Университет Росздрава»

Кафедра фармацевтической технологии

Получение гормона роста с использованием методов биотехнологии

    Введение
  • 1. Структура гормона роста человека
  • 2. Получение гормона роста в биотехнологии
  • Заключение
  • Список литературы
  • Введение Гормон роста или соматотропин принадлежит к семейству гипофизарных белковых гормонов. Этот регуляторный белок, имеющий молекулярную массу около 22000 дальтон, выполняет в организме важную функцию стимулятора соматического роста.
  • Впервые гормон был выделен и очищен в 1963 году из гипофиза, полученного из трупного материала. Гормон видеоспецифичен и является единственным средством лечения детей, страдающих от его недостатка [2].
  • Действие соматотропного гормона на костный рост опосредовано через соматомедины — инсулиноподобные ростовые факторы полипептидной природы. Главным источником соматомединов в циркуляции является печень, где их синтез стимулируется соматотропным гормоном. В регуляции гепатической продукции соматомединов участвуют и другие гормоны — инсулин, пролактин, тиреоидные гормоны. Помимо печени, соматомедины синтезируются в других клетках и тканях, в частности в хрящевой ткани, где они могут действовать локально.
  • Химический синтез гормона сложен и дорог. Именно поэтому соматотропин оказался одним из первых продуктов, полученных методами генной инженерии. Фирмой Genentech Inc.(CШA) был сконструирован «квазисинтетический» ген соматотропина, построенный из синтетического фрагмента ДНК, кодирующего 23 аминокислоты N-концевой части гормона и фрагмента к ДНК, несущего информацию об остальной части молекулы соматотропина. Введение его в плазмиду, содержащую бактериальный промотор (регуляторный элемент, контролирующий транскрипцию гена) и сигнал инициации трансляции, обеспечивало эффективную экспрессию гена и приводило к синтезу гормона роста.
  • 1.Структурагормона ростачеловека
  • Соматотропины разной видовой принадлежности, обладая различиями в химической структуре, иногда довольно значительными, тем не менее проявляют четкую структурную гомологию. Все изученные соматотропины млекопитающих, в том числе человека, построены из одной полипептидной цепи, состоящей из 191 аминокислотного остатка. Они содержат по одному остатку триптофана и четыре остатка полуцистина. Два дисульфидных мостика (в соматотропине человека между остатками Цис54-Цис165 и ЦИС182-ЦИС189) формируют две петли полипептидной цепи — большую, включающую центральный участок аминокислотной последовательности, и малую на С-концевом участке.
  • Пространственная структура соматотропинов характеризуется высокой степенью упорядоченности. Высокое содержание в составе соматотропинов нелолярных аминокислот обуславливает их большую склонность к образованию в растворе димеров и более крупных агрегатов [5].
  • Отмечая в целом эволюционную консервативность соматотропина в ряду млекопитающих, которая сочетается с консервативностью его биологической функции, следует сказать, однако, что в этом ряду несколько особняком стоит соматотропин человека. Сохраняя схему строения, общую для других млекопитающих, гормон человека отличается аминокислотной последовательностью от изученных соматотропинов животных на 34-35%. Этим может объясняться неэффективность соматотропинов животного происхождения как стимуляторов роста при введении людям.
  • Вместе с тем при сравнении аминокислотных последовательностей соматотропинов человека и различных животных во всех этих белках легко выявляются участки, почти идентичные по структуре. Высокая эволюционная консервативность отдельных участков полипептидной цепи может свидетельствовать об их принципиально важной функциональной роли как носителей информации о специфической функции гормонального белка.
  • Гормон роста, или соматотропный гормон (СТГ), продуцируется специализированными клетками гипофиза — соматотрофами. Содержание соматотропного гормона в одном гипофизе человека составляет около 5 мг и по крайней мере на порядок превышает содержание других гормонов.
  • Биосинтез и секреция соматотропного гормона находятся под сложным контролем, включающим регуляцию в первую очередь гипоталамическими факторами: ингибирующую регуляцию соматостатином и стимулирующую СТГ-рилизинг фактором, а также гормонами — трийодтиронином и глюкокортикоидами, опиоидными пептидами и т.д.
  • Секреция соматотропного гормона зависит также от концентрации в плазме крови метаболитов, в регуляции обмена которых участвует СТГ, увеличивается в условиях дефицита энергетических субстратов, а также во время сна и в стрессовых ситуациях.
  • Продуцируемый гипофизом соматотропный гормон отличается высокой гетерогенностью, являющейся результатом как альтернативного сплайсинга мРНК соматотропного гормона, так и посттрансляционных модификаций — протеолиза, фосфорилирования, гликозилирования, димеризации и олигомеризации. При стимуляции секреции гормона все эти формы высвобождаются из гипофиза в циркуляцию и через 30 мин более 50% соматотропного гормона присутствует в плазме крови в мономерной форме, 27% — в димерной и менее 20% — в олигомерной.
  • Среди мономерных форм соматотропного гормона доминирует 22 кдальтон СТГ (83%), в меньших количествах присутствует 20 кдальтон СТГ (11%) и около 6% составляют различные кислые формы гормона. Таким образом, реакция организма на соматотропный гормонаявляется результатом суммарного действия белков, несколько различающихся по физико-химическим, биологическим и иммунологическим свойствам [1].
  • 2. Получение гормона роста в биотехнологии
  • Несмотря на большой прогресс, достигнутый в исследовании соматотропных гормонов человека и животных, механизм их действия на молекулярном уровне изучен недостаточно. Отсутствие данных о точной пространственной структуре гормонов этой группы затрудняет исследования их взаимодействия с рецепторами, ограничивает возможности изучения структурно-функциональных взаимоотношений различных участков полипептидной цепи, не позволяет в полной мере использовать достижения белковой инженерии для создания аналогов соматотропинов.
  • Рекомбинантный соматотропин, получивший название соматрем, стал вторым биосинтетическим фармацевтическим препаратом. СТГ, биологически чистый и свободный от вирусных загрязнений, впервые был получен в 1980 году фирмой «Genentech». Гормон, синтезированный в генетически сконструированных клетках кишечной палочки, отличается от гормона, выделенного из гипофиза, дополнительным остатком метионина на NН2 — конце молекулы [3].
  • На первом этапе клонировали двунитевую ДНК-копию мРНК и расщеплением рестрикционными эндонуклеазами получили последовательность, которая кодирует всю аминокислотную последовательность гормона, за исключением первых 23 аминокислот. Затем клонировали синтетический полипептид, соответствующий аминокислотам от 1-й до 23-й. Далее два фрагмента объединяли, затем «подстроили» к паре промоторов (промотор — специфическая последовательность в ДНК, необходимая для инициации транскрипции РНК-полимеразы) и участку связывания рибосом. Конечный выход гормона составил 2,4 млг на 1 мл культуры E.cjli (100000 молекул гормона на клетку). СТГ, синтезированный в бактериях, обладал нужной м.м. и не связан с каким-либо бактериальным белком, от которого его необходимо было отщеплять.
  • Изменяя аминокислотную последовательность СТГ посредством модификации кодирующего его гена, в бактериальных клетках можно синтезировать аналоги гормона, очень важные для изучения активных участков молекулы и этиологии карликовости на молекулярном уровне.
  • Используя методы рекомбинантных ДНК, можно синтезировать и другие факторы роста и факторы дифференцировки тканей, выделив вначале их мРНК, затем получив соответствующие гены. Это относится к соматомедину А, стимулирующему фиксацию серы в хряще, образование которого индуцируется соматотропином.
  • В 1982 году выделен и синтезирован полипептид, содержащий из 44 аминокислотных остатков, обладающий полной биологической активностью гипоталамического ризилинг-фактора соматотропина (СТГ-РФ). Введение СТГ-РФ способно компенсировать недостаток соматотропина. Примнение СТГ-РФ возможно не только для лечения гипофизарной карликовости, но и при некоторых формах диабета и для ускорения регенерации тканей у людей, получивших сильные ожоги.
  • Весь технологический цикл состоит из пяти функционально различных этапов:
  • 1) ферментация;
  • 2) первичная очистка белка;
  • 3) хроматографическая очистка;
  • 4) изготовление лекарственной формы;
  • 5) анализ качества субстанции и лекарственной формы соматогена.
  • Важной особенностью технологического процесса является обеспечение апирогенности при проведении хроматографической очистки белка.
  • Неотъемлемой составной частью каждого технологического цикла промышленного производства является проведение сложного комплекса анализов качества продукта. В основе объема и номенклатуры этих анализов лежат соответствующие рекомендации ВОЗ.
  • Заключение
  • В настоящее время разработан более совершенный препарат СТГч из ГТЧ, лишенный агрегированных форм и консерванта, — аусоматин. При производстве мономерных препаратов СТГч (например, аусоматина) получаются значительные количества агрегированных форм соматотропина в виде отходов производства. Разработан оригинальный способ превращения нековалентно связанного димера и полимера в мономер. Кроме того, во время этого процесса получаетсяковалентно связанный димер и полимер СТГч — мало изученные компоненты.
  • Интересны разработки по получению 20 К варианта СТГч. Перспективной задачей является получение и изучение не только различных форм СТГ, но и иммобилизованного СТГ с целью получения пролонгированного действия гормона. Разработан оригинальный способ получения иммобилизованного СТГч, обладающего пролонгированным действием [4].
  • Параллельно с получением СТГч была создана оригинальная комплексная технология получения гормонов аденогипофиза, в том числе всех видоспецифических, и некоторых их модификаций из ГТЧ. Важное значение имеет реализация целевой программы по созданию лечебного препарата СТГ (соматогена), полученного методом генной инженерии.
  • Клинический опыт показал, что, оптимизируя лечение низкорослости, целесообразно иметь в арсенале несколько аналогичных фармацевтических препаратов, получаемых различными технологиями или даже методами (СЧ, аусоматин, соматоген). Длительное лечение (годами) одним препаратом СТГч вызывает в организме уменьшение чувствительности в нему. Частично это может быть результатом образования антител, однако основную причину надо искать на уровне рецепторов и процессинга гормона.
  • Работа с ГТЧ, а также комплексные исследования выделяемых гормонов и их различных форм дают возможность изучать созданные природой системы и лучше их понять. Существование различных нативных форм СТГч в организме свидетельствует об их целесообразности и о возможном применении, например, в клинике.
  • При создании новых препаратов СТГч необходимо в первую очередь ориентироваться на нативные природные формы гормона и в случае целесообразности масштабировать их методом генной инженерии, как это делается с мономером СТГч.
  • При производстве препаратов СТГч из ГТЧ успешно реализуется комплексная промышленная технология получения и других гормонов аденогипофиза (ЛГч, ФСГч, ТТГч и др.). Необходимо оптимизировать производство, внедряя новые прогрессивные методы (аффинную хроматографию и др.); получать особочистые гормоны по комплексной технологии. Надо расширить производство и применение наборов иммуномикроанализа гормонов аденогипофиза для диагностики и биотехнологии, осуществить регламентированное производство стандартизированных антител различной гаммы, создавать новые препараты СТГч, в том числе иммобилизованные.
  • Тот факт, что СТГ влияет на белковый, жировой, минеральный обмен, действует на уровне клетки, не имея органа-мишени, и является анаболиком, дает большие перспективы его применения для стимуляции репарационных процессов и лечения различных заболеваний. Более широкое изучение этих вопросов, как и возможности применения различных модифицированных форм и вариантов СТГч, — актуальная и перспективная задача.

Список литературы


1. Биотехнология: Принципы и применение / под редакцией И. Хиггинса, Д. Беста, Дж. Джойса; пер. с англ.- М.: Мир, 1998, стр.45-82.


2. Биотехнология: Учебное пособие для ВУЗов В 8 кн. /Под ред. Н.С. Егорова, В.Д. Самуилова.- М.: Высшая школа, 1987.


3. Кефели В.И., Дмитриева Г.А. Биотехнология: курс лекций. Пущино, 1989. 96 с.


4. Молекулярная биология. Структура и функции белков./ Степанов В. М.// Москва, Высшая школа, 1996.

5. Николаев В. Биотехнология — приоритетное направление // Фармацевтический вестник. http://www.pharmvestnik.ru/cgi-bin/statya.pl?s >

6. Основы фармацевтической биотехнологии: Учебное пособие / Т.П. Прищеп, В.С. Чучалин, К.Л. Зайков, Л.К. Михалева. — Ростов-на-Дону.: Феникс; Томск: Издательство НТЛ, 2006.

7. Производство белковых веществ. Биотехнология. Кн. 5 : учеб. пособие для вузов / [В.А.Быков и др.]. — М.: Высш. шк. — 1987. — 142 с.

8. Сазыкин Ю. О. Биотехнология: учебное пособие для студентов высш. учеб. заведений / Ю.О. Сазыкин, С. Н. Орехов, И.И. Чакалева; под ред. А.В. Катлинского. — 3-е изд., стер. — М.: Издательский центр «Академия», 2008.

Подобные документы

История открытия гормона роста соматотропина, адренокортикотропного гормона и пролактина. Общая характеристика тропных гормонов; изучение их химического состава, строения, химических процессов, протекающих с участием гормонов в живых организмах.

курсовая работа [557,1 K], добавлен 30.05.2015

Влияние уровня гормона соматотропина на процесс роста человека. Хирургический и физиологический способы увеличения роста. Факты о самых низкорослых и высоких людях. Общепринятая рубрикация длины тела человека. Средние возрастные изменения роста.

реферат [384,1 K], добавлен 08.02.2012

Физические методы исследования строения белков. Зависимость биологической активности белков от их первичной структуры. Уравнение реакции переаминирования гистидина и глиоксиловой кислоты. Биологически активные производные гормона адреналина, их биосинтез.

контрольная работа [172,9 K], добавлен 10.07.2011

Стресс-реакция. Адреналин. Адренокортикотропный гормон. Кортизол и кортикостерон. Физическая работа как стресс-воздействие. Создание ступенчато повышающейся физической нагрузки. Определение уровня гормонов. Определение адренокортикотропного гормона.

дипломная работа [77,0 K], добавлен 15.12.2008

Описание васкулярного эндотелиального фактора роста как семейства ростовых факторов. Основные белки семейства, их биологическая роль с учётом молекулярной структуры и принципы их направленной модификации с целью изменения спектра биологического действия.

курсовая работа [838,1 K], добавлен 06.01.2016

Возникновение биотехнологии. Основные направления биотехнологии. Биоэнергетика как раздел биотехнологии. Практические достижения биотехнологии. История генетической инженерии. Цели, методы и ферменты генной инженерии. Достижения генетической инженерии.

реферат [32,4 K], добавлен 23.07.2008

Основные разделы биотехнологии и их характеристика. Клетка как объект биотехнологических исследований. Механизмы синтеза и распада веществ в живой клетке. Биополимеры и их производные. Классификация направлений пищевой биотехнологии по целевым продуктам.

курсовая работа [72,0 K], добавлен 15.12.2014

Генетический полиморфизм и его причины. Взаимодействие рецептора и гормона. Основные примеры полиморфных маркеров, ассоциированных с поведенческими реакциями. Анализ ассоциаций изученных полиморфных локусов с различными формами агрессивного поведения.

дипломная работа [667,1 K], добавлен 02.02.2018

Понятие и сущность биотехнологии, история ее возникновения. Основные направления и методы биотехнологии. Генная и клеточная инженерия. «Три волны» в создании генно-модифицированных растений. Трансгенные животные. Методы иммобилизации ферментов и клеток.

реферат [25,0 K], добавлен 11.01.2013

Уникальные свойства ферментов как биокатализаторов, их высокая каталитическая активность и избирательность действия. Определение наличия и активности фермента в препарате. Факторы, влияющие на биосинтез ферментов, интенсификация процесса роста и синтеза.

реферат [19,5 K], добавлен 19.04.2010

источник