В регуляции белкового обмена не участвуют гормоны поджелудочной железы

Гормональная регуляция белкового обмена

Все гормоны регулирующие, белковый обмен, делятся на две группы:

Анаболические гормоны. Они активируют синтез белка и тормозят его распад.

а) гормон роста – соматотропный гормон вырабатывается в передней доле

гипофиза, активирует все стадии синтеза нуклеиновых кислот и белка, активирует транспорт аминокислот в клетку, обеспечивает синтез белка энергией, переключая биоэнергетику клетки с углеводов на липиды, в результате усиливается рост костного скелета, мышечной ткани, устанавливается положительный азотистый баланс.

б) инсулин – гормон поджелудочной железы, активирует синтез белка, распад глюкозы и образование энергии, которая необходима для синтеза белка., тормозит распад белка и глюконеогенез, т.е. образование глюкозы из аминокислот.

в) тироксин – гормон щитовидной железы, в детском организме и в малых дозах стимулирует синтез белка практически во всех тканях, способствует задержке азота, активирует транспорт аминокислот через мембраны, активирует синтез около 100 ферментов.

г) андрогены – активируют синтез белка в мышечной, соединительной и костной ткани, а также в тканях-мишенях мужского организма, активирует все этапы синтеза белка и нуклеиновых кислот, транспорт аминокислот в клетку.

д) эстрогены – активируют синтез белка в тканях-мишенях женского организма.

Катаболические гормоны: активируют распад белка и аминокислот, тормозят синтез белка:

а) тироксин в больших дозах во взрослом возрасте усиливает окислительные процессы в том числе аминокислот, активирует распад белка, повышает основной обмен, способствует усилению выведению азота из организма. Активирует синтез глюкозы из аминокислот.

б) гормоны коры надпочечников: глюкокортикоиды усиливают распад белка, трансаминирование, тормозят синтез белка, активируют глюконеогенез.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Да какие ж вы математики, если запаролиться нормально не можете. 8544 — | 7397 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Регуляция белкового обмена

Регуляция обмена белков осуществляется нейроэндокринным путем.

Участие нервной системы в регуляции белкового обмена.

Имеются данные, что в гипоталамусе (промежуточный мозг) существуют специальные центры, регулирующие белковый обмен. Механизм влияния ЦНС осуществляется через эндокринную систему.

Гормональная регуляция метаболизма белков может приводить к увеличению его анаболической направленности (влияния соматотропина, инсулина, глюкокортикоидов, тестостерона, эстрогенов, тироксина) и реже способствует катаболическим эффектам (глюкокортикоиды, тироксин) за счет чего обеспечивает динамическое равновесие синтеза и распада белков.

Синтез белков контролируется соматотропным гормоном аденогипофиза «СТГ» или гормоном роста. Этот гормон стимулирует увеличение массы всех органов и тканей во время роста организма за счет:

1) повышения проницаемости клеточных мембран для аминокислот;

2) подавления синтеза катепсинов (внутриклеточных протеолитических ферментов);

3) катаболическое действие СТГ на жировой обмен снижает скорость окисления аминокислот, что повышает транспорт аминокислот в клетки и синтез белка;

Аналогичный эффект оказывает гормон поджелудочной железы (инсулин) и гормоны мужских половых желез (андрогены). Анаболический эффект тестостерона реализуется главным образом в мышечной ткани. Эстрогены действуют подобно тестостерону, но их эффект значительно меньше. Повышение образования белков, при избытке половых гормонов, выражается в усиленном росте, увеличении массы тела. В ряде случаев, например в период полового созревания, эти явления имеют физиологический характер. В других случаях (например, при опухоли гипофиза) могут развиваться гигантизм и другие гиперпластические процессы.

Распад белка регулируется гормонами щитовидной железы – тироксином и трийодтиронином. Эти гормоны в определенных концентрациях, могут стимулировать синтез белка, и благодаря этому активизировать рост, развитие и дифференцировку тканей и органов. При ограничении поступления с пищей жиров и углеводов тироксин мобилизует белки для энергетического использования. Если же углеводов, жиров и аминокислот в организме достаточно, тироксин способствует повышению синтеза белка.

Гормоны коры надпочечников – глюкокортикоиды усиливают распад белков в тканях (особенно в мышечной и лимфоидной). Также глюкокортикоиды вызывают уменьшение концентрации белка в большинстве клеток, за счет чего повышается концентрации аминокислот в плазме крови. При этом они увеличивают синтез белка в печени и его переход в углеводы (глюконеогенез).

Гормон мозгового вещества надпочечников – инсулин повышает поступление в клетки аминокислот, но аналогичное влияние инсулина на углеводный обмен ограничивает использование аминокислот в энергетическом обмене.

Обмен жиров

Жиры – сложные химические структуры, состоящие из триглицеридов и липоидных веществ (жироподобные вещества – фосфатиды, стерины, цереброзиды и др.) объединены в одну группу по физико-химическим свойствам: они не растворяются в воде, но растворяются в органических растворителях (эфир, спирт, бензол и др.).

Жиры, поступившие в пищеварительный аппарат под действием липолитических ферментов и при участии желчи в кишечнике распадаются на глицерин и жирные кислоты. Всасывание последних осуществляется преимущественно в лимфу и частично в кровь. Через грудной лимфатический проток они попадают в венозную кровь, при этом через 1 ч после приема жирной пищи их концентрация может достигать 1—2%, а плазма крови становится мутной. Через несколько часов плазма очищается с помощью гидролиза триглицеридов липопротеиновой липазой, а также путем отложения жира в клетках печени и жировой ткани.

источник

Гормоны поджелудочной железы

Гормонами называются вещества, синтезируемые крупными эндокринными железами и особыми железистыми клетками во внутренних органах. Их роль для организма заключается в контроле и регулировании метаболических биохимических процессов.

Гормоны поджелудочной железы вырабатываются в органе пищеварительной системы, связаны с перевариванием пищи и усвоением ее полезных составляющих. Через общую систему гипоталамо-гипофизарного управления подчиняются влиянию необходимости изменений обмена веществ. Чтобы понять особенности деятельности поджелудочной железы, необходим небольшой урок анатомии и физиологии.

Строение и функции

Поджелудочная железа является самой крупной среди эндокринных. Расположена забрюшинно. В строении различают: округлую головку, более широкое тело и удлиненный хвост. Головка — наиболее широкая часть, окружена тканями двенадцатиперстной кишки. Ширина доходит в норме до пяти см, толщина составляет 1,5–3 см.

Тело — имеет переднюю, заднюю и нижнюю грани. Спереди прилегает к задней поверхности желудка. Нижним краем доходит до второго поясничного позвонка. Длина составляет 1,75–2,5 см. Хвостовая часть — направлена кзади и влево. Контактирует с селезенкой, надпочечником и левой почкой. Общая длина железы составляет 16–23 см, а толщина уменьшается от трех см в зоне головки до 1,5 см в хвосте.

Вдоль железы идет центральный (Вирсунгиев) проток. По нему пищеварительный секрет непосредственно попадает в двенадцатиперстную кишку. Структура паренхимы складывается из двух основных частей: экзокринной и эндокринной. Они отличаются по функциональному значению и строению.

Экзокринная — занимает до 96% массы, состоит из альвеол и сложной системы выводных протоков, которые «отвечают» за выработку и выделение в пищеварительный сок ферментов для обеспечения переваривания пищи в кишечнике. Их недостаток тяжело отражается на процессах усвоения белков, жиров и углеводов. Эндокринная часть — образована скоплением клеток в особые островки Лангерганса. Именно здесь происходит секреция важных для организма гормональных веществ.

Какие гормоны вырабатывает поджелудочная железа?

Возможности науки с каждым годом расширяют сведения о роли гормонов поджелудочной железы, позволяют выявлять новые формы, их влияние и взаимодействие. Поджелудочная железа выделяет гормоны, участвующие в обмене веществ в организме:

  • инсулин;
  • глюкагон;
  • соматостатин;
  • панкреатический полипептид;
  • гастрин.

До некоторого времени к гормонам поджелудочной железы относилось вещество С-пептид. Затем было доказано, что оно представляет собой частичку молекулы инсулина, оторванную при синтезе. Определение этого вещества сохраняет свою важность при анализе обнаружения количества инсулина в крови, поскольку его объем пропорционален основному гормону. Это используется в клинической диагностике.

В эндокринной части железы клетки делят на четыре главных типа:

  • альфа-клетки — составляют до 20% общей массы, в них синтезируется глюкагон;
  • бета-клетки — основная разновидность, на них приходится 65–80%, продуцируют необходимый инсулин, для этих клеток свойственно постепенное разрушение с возрастом человека, их количество к старости уменьшается;
  • дельта-клетки — занимают примерно 1/10 часть от общего числа, они вырабатывают соматостатин;
  • РР-клетки — обнаруживаются в небольшом количестве, отличаются способностью к синтезу панкреатического полипептида;
  • G-клетки — вырабатывают гастрин (совместно со слизистой оболочкой желудка).

Характеристика гормонов поджелудочной железы

Мы рассмотрим основные функции гормонов по их строению, действию на органы и ткани организма человека.

Инсулин

Представляет по строению полипептид. Структура состоит из двух цепочек аминокислот, соединенных «мостиками». Природа образовала наиболее похожий по строению с человеческим инсулин у свиней и кроликов. Эти животные оказались наиболее пригодными для получения препаратов из гормонов поджелудочной железы. Гормон вырабатывается бета-клетками из проинсулина с помощью отделения с-пептида. Выявлена структура, где происходит этот процесс — аппарат Гольджи.

Главная задача инсулина — регулировать концентрацию глюкозы в крови с помощью ее проникновения в жировые и мышечные ткани организма. Инсулин способствует усиленному поглощению глюкозы (повышает проницаемость клеточных оболочек), накоплению ее в виде гликогена в мышцах и печени. Запасы используются организмом при резком росте потребности в энергии (повышении физической нагрузки, заболевании).

Однако инсулин препятствует этому процессу. Он также не дает расщепляться жирам и образовывать кетоновые тела. Стимулирует синтез жирных кислот из продуктов обмена углеводов. Снижает уровень холестерина, предупреждает атеросклероз. Важна роль гормона в белковом обмене: он активизирует расход нуклеотидов и аминокислот с целью синтеза ДНК, РНК, нуклеиновых кислот, задерживает распад белковых молекул.

Эти процессы важны для формирования иммунитета. Инсулин способствует проникновению в клетки аминокислот, магния, калия, фосфатов. Регуляция количества необходимого инсулина зависит от уровня глюкозы в крови. Если образуется гипергликемия, то выработка гормона увеличивается, и наоборот.

В продолговатом мозге существует зона, именуемая гипоталамусом. В ней находятся ядра, куда поступает информация об избытке глюкозы. Обратный сигнал идет по нервным волокнам к бета-клеткам поджелудочной железы, тогда образование инсулина усиливается.

При снижении уровня глюкозы в крови (гипогликемии) ядра гипоталамуса тормозят свою активность, соответственно снижается секреция инсулина. Таким образом, высшие нервные и эндокринные центры регулируют обмен углеводов. Со стороны вегетативной нервной системы на регуляцию выработки инсулина влияют блуждающий нерв (стимулирует), симпатический (блокирует).

Доказано, что глюкоза способна непосредственно действовать на бета-клетки островков Лангерганса и высвобождать инсулин. Большое значение имеет активность разрушающего инсулин фермента (инсулиназы). Она максимально сосредоточена в паренхиме печени и в мышечной ткани. При прохождении крови сквозь печень разрушается половина инсулина.

Глюкагон

Гормон, как и инсулин является полипептидом, но в структуре молекулы присутствует только одна цепочка аминокислот. По своим функциям считается антагонистом инсулина. Образуется в альфа-клетках. Основное значение — расщепление липидов жировой ткани, увеличение концентрации глюкозы в крови.

Совместно с другим гормоном, который также выделяет поджелудочная железа, соматотропином и гормонами надпочечников (кортизолом и адреналином) он защищает организм от резкого падения энергетического материала (глюкозы). Кроме того, важна роль:

  • в усилении почечного кровотока;
  • нормализации уровня холестерина;
  • активации способности печеночной ткани к регенерации;
  • в выведении натрия из организма (снимает отеки).

Механизм действия связан во взаимодействии с рецепторами клеточной мембраны. В результате увеличивается активность и концентрация в крови фермента аденилатциклазы, что стимулирует процесс распада гликогена до глюкозы (гликогенолиз). Регуляция секреции осуществляется уровнем глюкозы в крови. При повышении тормозится выработка глюкагона, понижение активизирует продуцирование. Центральное воздействие оказывает передняя доля гипофиза.

Соматостатин

По биохимическому строению относится к полипептидам. Способен тормозить вплоть до полного прекращения синтез таких гормонов, как инсулин, тиреотропных, соматотропина, глюкагона. Именно этот гормон может подавлять секретирование пищеварительных ферментов и желчи.

Нарушение выработки способствует патологиям, связанным с пищеварительной системой. Тормозит секрецию глюкагона путем блокирования поступления в альфа-клетки ионов кальция. На действие влияет гормон роста соматотропин передней доли гипофиза через повышение активности альфа-клеток.

источник

Эндокринная функция поджелудочной железы. Роль гормонов поджелудочной железы в регуляции углеводного, жирового и белкового обменов.

Циклический процесс работы сердца. Систола и диастола предсердий и желудочков. Экстрасистолия. Автоматия сердца. Проводящая система сердца и водители ритма сердца. Электрокардиография как метод оценки функционального состояния сердца и процессов его регуляции.

Работа сердца состоит из сердечных циклов – непрерывно сменяющих друг друга периодов сокращения и расслабления, которые называются систолой и диастолой соответственно.

Цикл начинается с систолы предсердий, которая занимает 0,1 секунды. Их диастола длится 0,7 секунды. Сокращение желудочков продолжается 0,3 секунды, их расслабление – 0,5 секунды. Общее расслабление камер сердца называют общей паузой, и занимает она в данном случае 0,4 секунды. Таким образом, выделяют три фазы сердечного цикла:

систола предсердий – 0,1 сек.;

систола желудочков – 0,3 сек.;

диастола сердца (общая пауза) – 0,4 сек.

Общая пауза, предшествующая началу нового цикла, очень важна для наполнения сердца кровью.

Перед началом систолы миокард находится в расслабленном состоянии, а камеры сердца наполнены кровью, которая поступает из вен.

Давление во всех камерах примерно одинаковое, поскольку атриовентрикулярные клапаны раскрыты. В синоатриальном узле происходит возбуждение, что приводит к сокращению предсердий, из-за разницы давлений в момент систолы объем желудочков увеличивается на 15%. Когда систола предсердий заканчивается, давление в них понижается.

Систола (сокращение) предсердий

Перед началом систолы кровь движется к предсердиям и они последовательно ею заполняются. Часть ее остается в этих камерах, остальная направляется в желудочки и попадает в них через атриовентрикулярные отверстия, которые не закрыты клапанами.

В этот момент и начинается систола предсердий. Стенки камер напрягаются, их тонус растет, давление в них повышается на 5-8 мм рт. столба. Просвет вен, которые несут кровь, перекрывается кольцевыми пучками миокарда. Стенки желудочков в это время расслаблены, их полости расширены, и кровь из предсердий быстро без затруднений устремляется туда через атриовентрикулярные отверстия. Продолжительность фазы – 0,1 секунды. Систола наслаивается на конец фазы диастолы желудочков. Мышечный слой предсердий довольно тонкий, поскольку им не требуется много силы для заполнения кровью соседних камер.

Это следующая, вторая фаза сердечного цикла и начинается она с напряжения мышц сердца. Фаза напряжения длится 0,08 секунд и в свою очередь делится еще на две фазы:

Асинхронного напряжения – длительностью 0,05 сек. Начинается возбуждение стенок желудочков, их тонус повышается.

Изометрического сокращения – длительностью 0,03 сек. В камерах растет давление и достигает значительных значений.

Свободные створки атриовентрикулярных клапанов, плавающих в желудочках, начинают выталкиваться в предсердия, но попасть туда они не могут из-за напряжения сосочковых мышц, которые натягивают сухожильные нити, удерживающие клапаны и препятствующие их попаданию в предсердия. В момент, когда клапаны смыкаются и сообщение между сердечными камерами прекращается, заканчивается фаза напряжения.

Как только напряжение станет максимальным, начинается период сокращения желудочков, продолжительностью 0,25 сек. Систола этих камер происходит как раз в это время. Около 0,13 сек. длится фаза быстрого изгнания – выброс крови в просвет аорты и легочного ствола, во время которого клапаны прилегают к стенкам. Это возможно, благодаря росту давления (до 200 мм ртутного столба в левом и до 60 в правом). Остальное время приходится на фазу медленного изгнания: кровь выбрасывается под меньшим давлением и с меньшей скоростью, предсердия расслаблены, в них из вен начинает поступать кровь. Систола желудочков накладывается на диастолу предсердий.

Начинается диастола желудочков, и их стенки начинают расслабляться. Это длится в течение 0,45 сек. Период расслабления этих камер накладывается на еще продолжающуюся диастолу предсердий, поэтому эти фазы объединяют и называют общей паузой. Что происходит в это время? Желудочек, сократившись, выгнал из своей полости кровь и расслабился. В нем образовалось разреженное пространство с давлением близким к нулю. Кровь стремится попасть обратно, но полулунные клапаны легочной артерии и аорты, смыкаясь, не дают ей этого сделать. Тогда она направляется по сосудам. Фаза, которая начинается с расслабления желудочков и заканчивается перекрыванием просвета сосудов полулунными клапанами, называется протодиастолической и продолжается 0,04 сек.

После этого начинается фаза изометрического расслабления продолжительностью 0,08 сек. Створки трехстворчатого и митрального клапанов сомкнуты и не дают крови поступать в желудочки. Но когда давление в них становится ниже, чем в предсердиях, атриовентрикулярные клапаны открываются. За это время кровь наполняет предсердия и теперь свободно попадает в другие камеры. Это фаза быстрого наполнения длительностью 0, 08 сек. В течение 0,17 сек. продолжается фаза медленного наполнения, во время которой кровь продолжает поступать в предсердия, и небольшая ее часть через атриовентрикулярные отверстия перетекает в желудочки. Во время диастолы последних в них поступает кровь из предсердий во время их систолы. Это пресистолическая фаза диастолы, которая продолжается 0,1 сек. Так завершается цикл и вновь начинается.

Экстрасистолия – вариант нарушения сердечного ритма, характеризующийся внеочередными сокращениями всего сердца или его отдельных частей (экстрасистолами). Проявляется ощущением сильного сердечного толчка, чувством замирания сердца, тревоги, нехватки воздуха. Снижение сердечного выброса при экстрасистолии влечет уменьшение коронарного и мозгового кровотока и может приводить к развитию стенокардии и преходящих нарушений мозгового кровообращения (обмороков, парезов и т. д.). Повышает риск развития мерцательной аритмии и внезапной смерти.

Возбуждение в сердце возникает периодически под влиянием процессов, протекающих в нем самом. Эта способность сердца сокращаться под действием импульсов, возникающих в самой ткани без внешних воздействий, получила название автоматии.

Показателем автоматии сердечной мышцы может быть тот факт, что изолированное сердце лягушки, удаленное из организма и помещенное в физиологический раствор, может в течение длительного времени ритмически сокращаться.

Способностью к автоматии обладают определенные участки миокарда, состоящие из специфической (атипической) мышечной ткани, бедной миофибриллами, богатой саркоплазмой и напоминающей эмбриональную мышечную ткань. Специфическая (атипическая) мускулатура образует в сердце проводящую систему.

Помимо специфической ткани, в миокарде сердца есть и неспецифическая (типическая) мышечная ткань. По строению она сходна с поперечно-полосатой скелетной мышечной тканью и образует рабочую часть миокарда.

В клетках специфической ткани находится большое количество межклеточных контактов — нексусов. Эти контакты являются местом перехода возбуждения с одной клетки на другую. Такие же контакты имеются и между клетками атипической ткани и рабочего миокарда. Благодаря наличию контактов миокард, состоящий из отдельных клеток, работает как единое целое. Существование большого количества межклеточных контактов увеличивает надежность проведения возбуждения в миокарде.

Проводящая система сердца — совокупность атипичных кардиомиоцитов, образующих узлы: синоатриальный и атриовентрикулярный, межузловые тракты Бахмана, Венкебаха и Тореля, пучки Гиса и волокона Пуркинье.

Функциями проводящей системы сердца являются генерация потенциала действия, проведение его к сократительному миокарду, инициирование сокращения и обеспечение определенной последовательности сокращений предсердий и желудочков. Возникновение возбуждения в водителе ритма осуществляется с определенным ритмом произвольно, без воздействия внешних стимулов. Это свойство клеток водителя ритма получило название автоматик.

Проводящая система сердца состоит из узлов, пучков и волокон, сформированных атипичными мышечными клетками. В ее структуру входит синоатриальный (СА) узел, расположенный в стенке правого предсердия спереди устья верхней полой вены (рис. 1).

Одним из наиболее доступных и быстрых методов оценки функционального состояния сердечной мышцы (прежде всего проводящей системы сердца) является электрокардиография. Данный метод основан на регистрации электрических потенциалов, возникающих между определенными участками электрического поля сердца в процессе сердечного цикла. В каждый данный момент сердечного цикла миокардиальные клетки могут либо покоиться, либо находиться в возбужденном состоянии, либо восстанавливать свой исходный потенциал (мембранный потенциал покоя) после предшествующего возбуждения (т.е. находится в фазе реполяризации). В связи с тем, что миокард состоит из огромного количества клеток, и все они возбуждаются, а затем реполяризуются не строго синхронно, то возникает такая ситуация, когда группы миокардиальных клеток могут быть по-разному заряжены. Так, одни миокардиоциты, которые находятся в состоянии покоя, заряжены снаружи положительно, а другие, которые в этот момент могут быть возбуждены, – напротив, отрицательно. Соответственно в каждый данный момент сердечного цикла между определенными группами по-разному заряженных миокардиальных клеток возникает разность потенциалов; а в связи с тем, что в состав миокарда входит огромное количество клеток, такая разность потенциалов, как правило, имеет довольно большое значение. Ткани тела, в свою очередь, обладают хорошей электропроводностью, и регистрировать разность потенциалов между какими-то участками электрического поля сердца можно непосредственно с поверхности тела, используя усилитель электрических сигналов. Именно на данном принципе и основан метод электрокардиографии, введенный в клиническую практику В. Эйнтховеном, А.Ф. Самойловым, Т. Льюисом и В.Ф. Зелениным в 1903г.

Эндокринная функция поджелудочной железы. Роль гормонов поджелудочной железы в регуляции углеводного, жирового и белкового обменов.

Поджелудочная железа – это орган пищеварительной системы, обеспечивающий переваривание питательных веществ – жиров, белков, углеводов. Вместе с тем, поджелудочная железа – это орган эндокринной системы. Она секретирует в кровь гормоны, регулирующие все виды обмена веществ. Таким образом, поджелудочная железа выполняет две функции – эндокринную и экзокринную.

Эндокринная функция поджелудочной железы

Поджелудочная железа секретирует в кровь пять гормонов, регулирующих в основном углеводный обмен. Эндокринная часть поджелудочной железы составляет не более 2% от всей массы органа. Она представлена островками Лангерганса – скоплениями клеток, которые находятся в окружении паренхимы поджелудочной железы.

Большинство островков Лангерганса сосредоточены в хвосте органа. По этой причине поражение хвоста поджелудочной железы воспалительным процессом часто приводит к недостаточности эндокринной функции органа. В островках Лангерганса находятся клетки разных типов, секретирующие разные гормоны. Больше всего в них содержится бета-клеток, вырабатывающих инсулин.

Функции гормонов поджелудочной железы

Поджелудочная железа вырабатывает пять гормонов. Два из них существенно влияют на обмен веществ. Это инсулин и глюкагон. Другие гомоны имеют меньшее значение для регуляции метаболизма, либо секретируются поджелудочной железой в малых количествах.

Анаболический гормон, основной функцией которого является транспорт сахара в клетки организма. Он снижает уровень глюкозы в крови за счет:

изменения проницаемости клеточных мембран для глюкозы

активации ферментов, обеспечивающих расщепление глюкозы

стимуляции превращения глюкозы в гликоген

стимуляции превращения глюкозы в жир

угнетения образования глюкозы в печени

стимулирует синтез белков и жиров

препятствует расщеплению триглицеридов, гликогена и белков

Принимает важнейшее участие в углеводном обмене. Основная функция этого гормона поджелудочной железы – стимуляция гликогенолиза (процесс расщепления гликогена, в процессе которого в кровь выделяется глюкоза).

активирует процесс образования глюкозы в печени

стимулирует расщепление жира

стимулирует синтез кетоновых тел

Физиологическое действие глюкагона:

повышает артериальное давление и частоту пульса

повышает силу сердечных сокращений

способствует расслаблению гладкой мускулатуры

усиливает кровоснабжение мышц

повышает секрецию адреналина и других катехоламинов

Вырабатывается не только в поджелудочной железе, но и в гипоталамусе. Его единственная функция – это подавление секреции других биологически активных веществ:

Вазоактивный интестинальный пептид

Стимулирует перистальтику кишечника, увеличивает приток крови к органам ЖКТ, угнетает выработку соляной кислоты, усиливает выработку пепсиногена в желудке.

Стимулирует желудочную секрецию. Подавляет внешнесекреторную функцию ПЖ.

Физиологическое действие глюкагона поджелудочной железы

Экзокринная функция ПЖ заключается в секреции панкреатического сока. По системе протоков он попадает в двенадцатиперстную кишку, где участвует в процессе пищеварения. Секрет поджелудочной железы содержит:

ферменты — расщепляют питательные вещества, поступающие в кишечник с едой

ионы бикарбоната — ощелачивают желудочный сок, поступающий в двенадцатиперстную кишку из желудка

Регуляция экзокринной функции поджелудочной железы осуществляется гормонами, которые вырабатываются в желудке и кишечнике:

Все эти вещества угнетают активность поджелудочной железы. Они вырабатываются в ответ на растяжение стенок желудка и кишечника. Их секрецию стимулирует панкреатический сок, попадающий в двенадцатиперстную кишку после приема пищи.

Функции ферментов поджелудочной железы

ПЖ вырабатывает ферменты, которые переваривают все виды питательных веществ – углеводы, белки и жиры.

Ферменты, расщепляющие белки. Учитывая, что разновидностей протеинов много, поджелудочная железа вырабатывает несколько видов протеолитических ферментов:

Этот фермент расщепляет жиры.

Фермент, расщепляющий полисахариды (сложные углеводы).

Несколько видов ферментов, которые расщепляют нуклеиновые кислоты (ДНК и РНК).

Нарушение функции поджелудочной железы

Некоторые болезни поджелудочной железы сопровождаются нарушением функции этого органа. Чаще всего это происходит при остром или хроническом панкреатите, когда вследствие воспалительного процесса уничтожается большая часть паренхимы поджелудочной железы. Экзокринная функция со временем нарушается у большинства больных хроническим панкреатитом. Эндокринная – приблизительно у четверти пациентов.

Нарушение экзокринной функции сопровождается расстройством пищеварения и диспепсическими симптомами. Для этого состояния характерны следующие признаки:

При нарушении эндокринной функции поджелудочной железы обычно развивается сахарный диабет. Он протекает легче, чем классический диабет первого типа, так как не все бета-клетки островков Лангерганса уничтожаются. Тем не менее, через несколько лет от начала заболевания у пациента обычно возникает потребность в инъекциях инсулина. Иногда удается нормализовать уровень глюкозы в крови при помощи диеты и сахароснижающих препаратов.

66. Эндокринной функции надпочечников. Стероидные гормоны коры надпочечников и их роль. Адреналин и его действие на различные функциональные системы. Роль гормонов надпочечников в физиологических проявлениях состояния стресса.

Какие гормоны выделяют надпочечники

Надпочечники – парная железа, располагающаяся в забрюшинном пространстве немного выше почек. Общий вес органов 7–10 г. Надпочечники окружены жировой тканью и почечной фасцией близко к верхнему полюсу почки.

Форма органов разная – правый надпочечник напоминает трехгранную пирамиду, левый похож на полумесяц. Средняя длина органа 5 см, ширина 3–4 см, толщина – 1 см. Цвет желтый, поверхность бугристая.

Надпочечник покрыт сверху плотно фиброзной капсулой, которая соединяется с капсулой почки многочисленными тяжами. Паренхима органа состоит из коркового и мозгового вещества, причем корковое вещество окружает мозговое.

Они представляют собой 2 самостоятельные железы внутренней секреции, имеют разный клеточный состав, разное происхождение и выполняет разные функции, несмотря на то, что объединены в один орган.

Интересно то, что железы и развиваются независимо друг от друга. Корковое вещество у зародыша начинается формироваться на 8 неделе развития, а мозговое только на 12–16 неделе.

В корковом слое синтезируется до 30 кортикостероидов, которые иначе называются стероидными гормонами. И надпочечники выделяют следующие гормоны, которые разделяют их на 3 группы:

глюкокортикоиды – кортизон, кортизол, кортикостерон. Гормоны влияют на углеводный обмен и оказывают проявляющее воздействие на воспалительные реакции;

минералокортикоиды – альдостерон, дезоксикортикостерон, они управляют водным и минеральным обменом;

половые гормоны – андрогены. Они регулируют половые функции и влияют на половое развитие.

Стероидные гормоны довольно быстро разрушаются в печени, переходя в водорастворимую форму, и выводятся из организма. Некоторые из них можно получить искусственным путем. В медицине они активно используются при лечении бронхиальной астмы, ревматизма, суставных недугов.

Мозговой слой синтезирует катехоламины – норадреналин и адреналин, так называемые гормоны стресса, выделяемые надпочечниками. Кроме того, здесь вырабатываются пептиды, которые регулируют деятельность ЦНС и ЖКТ: соматостатин, бета-энкефалин, вазоактивный инстентинальный пептид.

Мозговое вещество расположено в надпочечнике центрально, образовано хромаффинными клетками. Сигнал о выработке катехоламинов орган получает от преганглионарных волокон симпатической нервной системы. Таким образом мозговое вещество можно рассматривать как специализированное симпатическое сплетение, которое, однако, осуществляет выделение веществ непосредственно в кровяное русло минуя синапс.

Время полужизни гормонов стресса составляет 30 секунд. Эти вещества очень быстро разрушаются.

В целом воздействие гормонов на состояние и поведение человека можно описать при помощи теории кролика и льва. Человек, у которого в стрессовой ситуации синтезируется мало норадреналина, реагирует на опасность, как кролик – испытывает страх, бледнеет, теряет способность принимать решения, оценивать ситуацию. Человек, у которого выброс норадреналина высок, ведет себя как лев – испытывает злость и ярость, не ощущает опасности и действует под влиянием желания подавить или уничтожить.

Схема формирования катехоламинов такова: некий внешний сигнал активирует раздражитель, действующий на головной мозг, что вызывает возбуждение задних ядер гипоталамуса. Последнее является сигналом для возбуждения симпатических центров в грудном отделе спинного мозга. Оттуда по преганглионарным волокнам сигнал поступает в надпочечники, где и происходит синтез норадреналина и адреналина. Затем гормоны выбрасываются в кровь.

Эффект воздействия гормонов стресса основан на взаимодействии с альфа- и бета-адренорецепторами. А поскольку последние имеются практически во всех клетках, включая клетки крови, то влияние катехоламинов шире, чем у симпатической нервной системы.

Адреналин воздействует на человеческий организм следующим образом:

увеличивает частоту сердечных сокращений и усиливает их;

улучшает концентрацию, ускоряет мыслительную деятельность;

провоцирует спазм мелких сосудов и «неважных» органов – кожи, почек, кишечника;

ускоряет обменные процессы, способствует быстрому распаду жиров и сгоранию глюкозы. При краткосрочном воздействии это способствует улучшению сердечной деятельности, но при длительном чревато сильным истощением;

увеличивает частоту дыхания и повышает глубину входа – активно используется при купировании приступов астмы;

снижает перистальтику кишечника, но вызывает непроизвольное мочеиспускание и дефекацию;

способствует расслаблению матки, уменьшая вероятность выкидыша.

Выброс адреналина в кровь нередко заставляет человека совершать немыслимые в обычных условиях героические поступки. Однако он же является причиной «панических атак» – беспричинных приступов страха, сопровождающихся учащенным сердцебиением и одышкой.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: На стипендию можно купить что-нибудь, но не больше. 9121 — | 7289 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник