Влияние гормонов на организм физиология

Гормоны

  • Физиология
  • История физиологии
  • Методы физиологии

Гормоны человека, их виды и характеристика

Биологически активное вещество (БАВ), физиологически активное вещество (ФАВ) — вещество, которое в малых количествах (мкг, нг) оказывает выраженный физиологический эффект на различные функции организма.

Гормон — физиологически активное вещество, вырабатываемое эндокринными железами или специализированными эндокринными клетками, выделяемое во внутреннюю среду организма (кровь, лимфа) и оказывающее дистантное действие на клетки-мишени.

Гормон — это сигнальная молекула, секретируемая эндокринными клетками, которая посредством взаимодействия со специфическими рецепторами клеток-мишеней регулирует их функции. Поскольку гормоны являются носителями информации, то они, как и другие сигнальные молекулы, обладают высокой биологической активностью и вызывают ответные реакции клеток-мишеней в очень малых концентрациях (10 -6 — 10 -12 М/л).

Клетки-мишени (ткани-мишени, органы-мишени) — клетки, ткани или органы, в которых имеются специфичные для данного гормона рецепторы. Некоторые гормоны имеют единственную ткань-мишень, тогда как другие оказывают влияние повсеместно в организме.

Таблица. Классификация физиологически активных веществ

Характеристика

Гормоны (классические гормоны)

Вырабатываются специализированными эндокринными клетками, выделяются во внутреннюю среду организма и оказывают дистантное действие на клетки-мишени

Синтезируются не для регуляции, но оказывают выраженный физиологический эффект

Гормоноиды (тканевые гормоны)

Оказывают преимущественно местный, локальный эффект

Выделяются нервным окончанием и являются посредниками в синаптической передаче

Свойства гормонов

Гормоны имеют ряд общих свойств. Обычно они образуются специализированными эндокринными клетками. Гормоны обладают избирательностью действия, которая достигается благодаря связыванию со специфическими рецепторами, находящимися на поверхности клеток (мембранные рецепторы) или внутри них (внутриклеточные рецепторы), и запуску каскада процессов внутриклеточной передачи гормонального сигнала.

Последовательность событий передачи гормонального сигнала может быть представлена в виде упрощенной схемы «гормон (сигнал, лиганд) -> рецептор -> второй (вторичный) посредник -> эффекторные структуры клетки -> физиологический ответ клетки». У большинства гормонов отсутствует видовая специфичность (за исключением гормона роста), что позволяет изучать их эффекты на животных, а также использовать гормоны, полученные от животных, для лечения больных людей.

Различают три варианта межклеточного взаимодействия с помощью гормонов:

  • эндокринный (дистантный), когда они доставляются к клеткам-мишеням от места продукции кровью;
  • паракринный — гормоны диффундируют к клетке-мишени от рядом расположенной эндокринной клетки;
  • аутокринный — гормоны воздействуют на клетку-продуцент, которая одновременно является для него клеткой-мишенью.

По химической структуре гормоны делят на три группы:

  • пептиды (число аминокислот до 100, например тиротропина рилизинг-гормон, АКТГ) и белки (инсулин, гормон роста, пролактин и др.);
  • производные аминокислот: тирозина (тироксин, адреналин), триптофана — мелатонин;
  • стероиды, производные холестерола (женские и мужские половые гормоны, альдостерон, кортизол, кальцитриол) и ретиноевая кислота.

По выполняемой функции гормоны делят на три группы:

  • эффекторные гормоны, действующие непосредственно на клетки-мишени;
  • тронные гормоны гипофиза, контролирующие функцию периферических эндокринных желез;
  • гормоны гипоталамуса, регулирующие секрецию гормонов гипофизом.

Таблица. Типы действия гормонов

Действие гормона на значительном удалении от места образования

Гормон, синтезируемый в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой. Его высвобождение осуществляется в межтканевую жидкость и кровь

Действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейромедиатора или нейромодулятора

Разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости

Разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передастся через плазматическую мембрану рядом расположенной клетки

Высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность

Высвобождающийся из клетки гормон поступает в просвет протока и достигает, таким образом, другой клетки, оказывая на нес специфическое воздействие (характерно для желудочно- кишечных гормонов)

Гормоны циркулируют в крови в свободном (активная форма) и связанном (неактивная форма) состоянии с белками плазмы или форменных элементов. Биологической активностью обладают гормоны в свободном состоянии. Содержание их в крови зависит от скорости секреции, степени связывания, захвата и скорости метаболизма в тканях (связывания со специфическими рецепторами, разрушения или инактивации в клетках-мишенях или гепатоцитах), удаления с мочой или желчью.

Таблица. Физиологически активные вещества, открытые в последнее время

Ряд гормонов может подвергаться в клетках-мишенях химическим превращениям в более активные формы. Так, гормон «тироксин», подвергаясь дейодированию, превращается в более активную форму — трийодтиронин. Мужской половой гормон тестостерон в клетках-мишенях может не только превращаться в более активную форму — дегидротестостерон, но и в женские половые гормоны группы эстрогенов.

Действие гормона на клетку-мишень обусловлено связыванием, стимуляцией специфического к нему рецептора, после чего происходит передача гормонального сигнала на внутриклеточный каскад превращений. Передача сигнала сопровождается его многократным усилением, и действие на клетку небольшого числа молекул гормона может сопровождаться мощной ответной реакцией клеток-мишеней. Активация гормоном рецептора сопровождается также включением внутриклеточных механизмов, прекращающих ответ клетки на действие гормона. Это могут быть механизмы, понижающие чувствительность (десенситизация/адаптация) рецептора к гормону; механизмы, дефосфорилирующие внутриклеточные ферментные системы и др.

Рецепторы к гормонам, как и к другим сигнальным молекулам, локализованы на клеточной мембране или внутри клетки. С рецепторами клеточной мембраны (1-TMS, 7-TMS и лигандзависимые ионные каналы) взаимодействуют гормоны гидрофильной (лииофобной) природы, для которых клеточная мембрана не проницаема. Ими являются катехоламины, мелатонин, серотонин, гормоны белково-пептидной природы.

Гормоны гидрофобной (липофильной) природы диффундируют через плазматическую мембрану и связываются с внутриклеточными рецепторами. Эти рецепторы делятся на цитозольные (рецепторы стероидных гормонов — глюко- и минералокортикоидов, андрогенов и прогестинов) и ядерные (рецепторы тиреоидных йодсодержащих гормонов, кальцитриола, эстрогенов, ретиноевой кислоты). Цитозольные рецепторы и рецепторы эстрогенов связаны с белками теплового шока (БТШ), что предотвращает их проникновение в ядро. Взаимодействие гормона с рецептором приводит к отделению БТШ, образованию гормон-рецепторного комплекса и активации рецептора. Комплекс гормон-рецептор перемещается в ядро, где он взаимодействует со строго определенными гормон-чувствительными (узнающими) участками ДНК. Это сопровождается изменением активности (экспрессией) определенных генов, контролирующих синтез белков в клетке и другие процессы.

По использованию тех или иных внутриклеточных путей передачи гормонального сигнала наиболее распространенные гормоны можно разделить на ряд групп (табл. 4).

Таблица 4. Внутриклеточные механизмы и пути действия гормонов

Гормоны контролируют разнообразные реакции клеток-мишеней и через них — физиологические процессы организма. Физиологические эффекты гормонов зависят от их содержания в крови, количества и чувствительности рецепторов, состояния пострецепторных структур в клетках-мишенях. Под действием гормонов может происходить активация или торможение энергетического и пластического метаболизма клеток, синтеза различных, в том числе белковых веществ (метаболическое действие гормонов); изменение скорости деления клетки, ее дифференцировки (морфогенетическое действие), инициирование запрограммированной гибели клетки (апоптоз); запуск и регуляция сокращения и расслабления гладких миоцитов, секреции, абсорбции (кинетическое действие); изменение состояния ионных каналов, ускорение или торможение генерации электрических потенциалов в водителях ритма (корригирующее действие), облегчение или угнетение влияния других гормонов (реактогенное действие) и т.д.

Таблица. Распределение гормона в крови

Скорость возникновения в организме и продолжительность ответных реакций на действие гормонов зависит от типа стимулируемых рецепторов и скорости метаболизма самих гормонов. Изменения физиологических процессов могут наблюдаться через несколько десятков секунд и длиться кратковременно при стимуляции рецепторов плазматической мембраны (например, сужение сосудов и повышение артериального давления крови под действием адреналина) или наблюдаться через несколько десятков минут и длиться часами при стимуляции ядерных рецепторов (например, усиление обмена в клетках и увеличение потребления кислорода организмом при стимуляции тиреоидных рецепторов трийодтиронином).

Таблица. Время действия физиологически активных веществ

Время действия

Простые белки и гликопротеиды

Поскольку одна и та же клетка может содержать рецепторы к разным гормонам, то она способна быть одновременно клеткой-мишенью для нескольких гормонов и других сигнальных молекул. Действие одного гормона на клетку нередко сочетается с влиянием других гормонов, медиаторов, цитокинов. При этом в клетках-мишенях может происходить запуск ряда путей передачи сигналов, в результате взаимодействия которых может наблюдаться усиление или торможение ответной реакции клетки. Например, на гладкий миоцит стенки сосудов могут одновременно действовать норадреналин и вазопрессин, суммируя их сосудосуживающее влияние. Сосудосуживающее действие вазопрессина может быть устранено или ослаблено одновременным действием на гладкие миоциты сосудистой стенки брадикинина или оксида азота.

Регуляция образования и секреции гормонов

Регуляция образования и секреции гормонов является одной из важнейших функций эндокринной и нервной систем организма. Среди механизмов регуляции образования и секреции гормонов выделяют влияние ЦНС, «тройных» гормонов, влияние по каналам отрицательной обратной связи концентрации гормонов в крови, влияние конечных эффектов гормонов на их секрецию, влияние суточных и других ритмов.

Нервная регуляция осуществляется в различных эндокринных железах и клетках. Это регуляция образования и секреции гормонов нейросекреторными клетками переднего гипоталамуса в ответ на поступление к нему нервных импульсов с различных областей ЦНС. Эти клетки обладают уникальной способностью возбуждаться и трансформировать возбуждение в образование и секрецию гормонов, стимулирующих (рилизинг-гормоны, либерины) или тормозящих (статины) секрецию гормонов гипофизом. Например, при увеличении притока нервных импульсов к гипоталамусу в условиях психоэмоционального возбуждения, голода, болевого воздействия, действии тепла или холода, при инфекции и в других чрезвычайных условиях, нейросекреторные клетки гипоталамуса высвобождают в портальные сосуды гипофиза кортикотропина рилизинг-гормон, который усиливает секрецию адренокортикотропного гормона (АКТГ) гипофизом.

Непосредственное влияние на образование и секрецию гормонов оказывает АНС. При повышении тонуса СНС увеличивается секреция тройных гормонов гипофизом, секреция катехоламинов мозговым веществом надпочечников, тиреоидных гормонов щитовидной железой, снижается секреция инсулина. При повышении тонуса ПСНС увеличивается секреция инсулина, гастрина и тормозится секреция тиреоидных гормонов.

Регуляции тронными гормонами гипофиза используется для контроля образования и секреции гормонов периферическими эндокринными железами (щитовидной, корой надпочечников, половыми железами). Секреция тропных гормонов находится под контролем гипоталамуса. Тропные гормоны получили свое название из-за их способности связываться (обладать сродством) с рецепторами клеток-мишеней, формирующих отдельные периферические эндокринные железы. Троп- ный гормон к тироцитам щитовидной железы называют тиро- тропином или тиреотропным гормоном (ТТГ), к эндокринным клеткам коры надпочечников — адренокортикотропным гормоном (АКГТ). Тропные гормоны к эндокринным клеткам половых желез получили название: лютропин или лютеинизирующий гормон (ЛГ) — к клеткам Лейдига, желтому телу; фоллитропин или фолликулостимулирующий гормон (ФСГ) — к клеткам фолликулов и клеткам Сертоли.

Тропные гормоны при повышении их уровня в крови многократно стимулируют секрецию гормонов периферическими эндокринными железами. Они могут оказывать на них также другие эффекты. Так, например, ТТГ усиливает в щитовидной железе кровоток, активирует метаболические процессы в тироцитах, захват ими йода из крови, ускоряет процессы синтеза и секреции тиреоидных гормонов. При избыточном количестве ТТГ наблюдается гипертрофия щитовидной железы.

Регуляция обратными связями используется для контроля секреции гормонов гипоталамуса и гипофиза. Ее суть заключается в том, что нейросекреторные клетки гипоталамуса имеют рецепторы и являются клетками-мишенями гормонов периферической эндокринной железы и тройного гормона гипофиза, контролирующего секрецию гормонов этой периферической железой. Таким образом, если под влиянием гипоталамического тиреотропин-рилизинг-гормона (ТРГ) увеличится секреция ТТГ, то последний свяжется не только с рецепторами тирсоцитов, но и с рецепторами нейросекреторных клеток гипоталамуса. В щитовидной железе ТТГ стимулирует образование тиреоидных гормонов, а в гипоталамусе — тормозит дальнейшую секрецию ТРГ. Связь между уровнем ТТГ в крови и процессами образования и секреции ТРГ в гипоталамусе получила название короткой петли обратной связи.

На секрецию ТРГ в гипоталамусе оказывает влияние и уровень гормонов щитовидной железы. Если их концентрация в крови повышается, то они связываются с рецепторами тиреоидных гормонов нейросекреторных клеток гипоталамуса и тормозят синтез и секрецию ТРГ. Связь между уровнем тиреоидных гормонов в крови и процессами образования и секреции ТРГ в гипоталамусе получила название длинной петли обратной связи. Имеются экспериментальные данные о том, что гормоны гипоталамуса не только регулируют синтез и выделение гормонов гипофиза, но и тормозят собственное выделение, что определяют понятием сверхкороткой петли обратной связи.

Совокупность железистых клеток гипофиза, гипоталамуса и периферических эндокринных желез и механизмов их взаимного влияния друг на друга назвали системами или осями гипофиз — гипоталамус — эндокринная железа. Выделяют системы (оси) гипофиз — гипоталамус — щитовидная железа; гипофиз — гипоталамус — кора надпочечников; гипофиз — гипоталамус — половые железы.

Влияние конечных эффектов гормонов на их секрецию имеет место в островковом аппарате поджелудочной железы, С-клетках щитовидной железы, паращитовидных железах, гипоталамусе и др. Это демонстрируется следующими примерами. При повышении в крови уровня глюкозы стимулируется секреция инсулина, а при понижении — глюкагона. Эти гормоны по паракринному механизму тормозят секрецию друг друга. При повышении в крови уровня ионов Са 2+ стимулируется секреция кальцитонина, а при понижении — паратирина. Прямое влияние концентрации веществ на секрецию гормонов, контролирующих их уровень, является быстрым и эффективным способом поддержания концентрации этих веществ в крови.

Среди рассматриваемых механизмов регуляции секреции гормонов их конечными эффектами можно отметить регуляцию секреции антидиуретического гормона (АДГ) клетками заднего гипоталамуса. Секреция этого гормона стимулируется при повышении осмотического давления крови, например при потере жидкости. Снижение диуреза и задержка жидкости в организме под действием АДГ ведут к снижению осмотического давления и торможению секреции АДГ. Похожий механизм используется для регуляции секреции натрийуретического пептида клетками предсердий.

Влияние суточных и других ритмов на секрецию гормонов имеет место в гипоталамусе, надпочечниках, половых, шишковидной железах. Примером влияния суточного ритма является суточная зависимость секреции АКТГ и кортикостероидных гормонов. Самый низкий их уровень в крови наблюдается в полночь, а самый высокий — утром после пробуждения. Наиболее высокий уровень мелатонина регистрируется ночью. Хорошо известно влияние лунного цикла на секрецию половых гормонов у женщин.

Определение гормонов

Секреция гормонов — поступление гормонов во внутреннюю среду организма. Полипептидные гормоны накапливаются в гранулах и секретируются путем экзоцитоза. Стероидные гормоны не накапливаются в клетке и секретируются сразу после синтеза путем диффузии через клеточную мембрану. Секреция гормонов в большинстве случаев имеет циклический, пульсирующий характер. Периодичность секреции — от 5-10 мин до 24 ч и более (распространенный ритм — около 1 ч).

Связанная форма гормона — образование обратимых, соединенных нековалентными связями комплексов гормонов с белками плазмы и форменными элементами. Степень связывания различных гормонов сильно варьирует и определяется их растворимостью в плазме крови и наличием транспортного белка. Например, 90 % кортизола, 98 % тестостерона и эстрадиола, 96 % трийодтиронина и 99 % тироксина связываются с транспортными белками. Связанная форма гормона не может взаимодействовать с рецепторами и формирует резерв, который может быть быстро мобилизован для пополнения пула свободного гормона.

Свободная форма гормона — физиологически активное вещество в плазме крови в несвязанном с белком состоянии, способное взаимодействовать с рецепторами. Связанная форма гормона находится в динамическом равновесии с пулом свободного гормона, который в свою очередь находится в равновесии с гормоном, связанным с рецепторами в клетках-мишенях. Большинство полипептидных гормонов, за исключением соматотропина и окситоцина, циркулирует в низких концентрациях в крови в свободном состоянии, не связываясь с белками.

Метаболические превращения гормона — его химическая модификация в тканях-мишенях или других образованиях, обусловливающая снижение/повышение гормональной активности. Важнейшим местом обмена гормонов (их активации или инактивации) является печень.

Скорость метаболизма гормона — интенсивность его химического превращения, которая определяет длительность циркуляции в крови. Период полураспада катехоламинов и полипептидных гормонов составляет несколько минут, а тиреоидных и стероидных гормонов — от 30 мин до нескольких суток.

Гормональный рецептор — высокоспециализированная клеточная структура, входящая в состав плазматических мембран, цитоплазмы или ядерного аппарата клетки и образующая специфичное комплексное соединение с гормоном.

Органоспецифичность действия гормона — ответные реакции органов и тканей на физиологически активные вещества; они строго специфичны и не могут быть вызваны другими соединениями.

Обратная связь — влияние уровня циркулирующего гормона на его синтез в эндокринных клетках. Длинная цепь обратной связи — взаимодействие периферической эндокринной железы с гипофизарными, гипоталамическими центрами и с супрагипоталамическими областями ЦНС. Короткая цепь обратной связи — изменение секреции гипофизарного тронного гормона, модифицирует секрецию и высвобождение статинов и либеринов гипоталамуса. Ультракороткая цепь обратной связи — взаимодействие в пределах эндокринной железы, при котором выделение гормона влияет на процессы секреции и высвобождения его самого и других гормонов из данной железы.

Отрицательная обратная связь — повышение уровня гормона, приводящее к торможению его секреции.

Положительная обратная связь — повышение уровня гормона, обусловливающее стимуляцию и возникновение пика его секреции.

Анаболические гормоны — физиологически активные вещества, способствующие образованию и обновлению структурных частей организма и накоплению в нем энергии. К таким веществам относятся гонадотропные гормоны гипофиза (фоллитропин, лютропин), половые стероидные гормоны (андрогены и эстрогены), гормон роста (соматотропин), хориони- ческий гонадотропин плаценты, инсулин.

Инсулин — белковое вещество, вырабатываемое в β-клетках островков Лангерганса, состоящее из двух полипептидных цепей (А-цепь — 21 аминокислота, В-цепь — 30), снижающее уровень глюкозы крови. Первый белок, у которого была полностью определена первичная структура Ф. Сенгером в 1945-1954 гг.

Катаболические гормоны — физиологически активные вещества, способствующие распаду различных веществ и структур организма и высвобождению из него энергии. К таким веществам относятся кортикотропин, глюкокортикоиды (корти- зол), глюкагон, высокие концентрации тироксина и адреналина.

Тироксин (тетрайодтиронин) — йодсодержащее производное аминокислоты тирозина, вырабатываемое в фолликулах щитовидной железы, повышающее интенсивность основного обмена, теплопродукцию, оказывающее влияние на рост и дифференцировку тканей.

Глюкагон — полипептид, вырабатываемый в а-клетках островков Лангерганса, состоящий из 29 аминокислотных остатков, стимулирующий распад гликогена и повышающий уровень глюкозы крови.

Кортикостероидные гормоны — соединения, образующиеся в корковом веществе надпочечников. В зависимости от числа атомов углерода в молекуле делят на С18-стероиды — женские половые гормоны — эстрогены, С19 -стероиды — мужские половые гормоны — андрогены, С21 -стероиды — собственно кортикостероидные гормоны, обладающие специфическим физиологическим действием.

Катехоламины — производные пирокатехина, активно участвующие в физиологических процессах в организме животных и человека. К катехоламинам относятся адреналин, норадреналин и дофамин.

Симпатоадреналовая система — хромаффинные клетки мозгового вещества надпочечников и иннервирующие их преганглионарные волокна симпатической нервной системы, в которых синтезируются катехоламины. Хромаффинные клетки также обнаружены в аорте, каротидном синусе, внутри и около симпатических ганглиев.

Биогенные амины — группа азотсодержащих органических соединений, образующихся в организме путем декарбоксилирования аминокислот, т.е. отщепления от них карбоксильной группы — СООН. Многие из биогенных аминов (гистамин, серотонин, норадреналин, адреналин, дофамин, тирамин и др.) оказывают выраженный физиологический эффект.

Эйкозаноиды — физиологически активные вещества, производные преимущественно арахидоновой кислоты, оказывающие разнообразные физиологические эффекты и подразделяющиеся на группы: простагландины, простациклины, тром- боксаны, левугландины, лейкотриены и др.

Регуляторные пептиды — высокомолекулярные соединения, представляющие собой цепочку аминокислотных остатков, соединенных пептидной связью. Регуляторные пептиды, насчитывающие до 10 аминокислотных остатков, называют олигопептидами, от 10 до 50 — полипептидами, свыше 50 — белками.

Антигормон — защитное вещество, вырабатываемое организмом при длительном введении белковых гормональных препаратов. Образование антигормона является иммунологической реакцией на введение извне чужеродного белка. По отношению к собственным гормонам организм не образует антигормоны. Однако могут быть синтезированы вещества, близкие по строению к гормонам, которые при введении в организм действуют как антиметаболиты гормонов.

Антиметаболиты гормонов — физиологически активные соединения, близкие по строению к гормонам и вступающие с ними в конкурентные, антагонистические отношения. Антиметаболиты гормонов способны занимать их место в физиологических процессах, совершающихся в организме, или блокировать гормональные рецепторы.

Тканевой гормон (аутокоид, гормон местного действия) — физиологически активное вещество, вырабатываемое неспециализированными клетками и оказывающее преимущественно местный эффект.

Нейрогормон — физиологически активное вещество, вырабатываемое нервными клетками.

Эффекторный гормон — физиологически активное вещество, оказывающее непосредственный эффект на клетки и органы-мишени.

Тронный гормон — физиологически активное вещество, действующее на другие эндокринные железы и регулирующее их функции.

источник

Гормоны, их классификация. Свойства гормонов. Типы воздействия гормонов на организм. Транспорт и выведение гормонов из организма. Регуляция образования и секреции гормонов

Эндокринные железы – специализированные популяции секреторных клеток, син-

тезирующие гормоны. К эндокринным железам относятся: эпифиз, гипофиз, щитовидная

железа, паращитовидные железы, островки Лангерганса поджелудочной железы, кора и

мозговое вещество надпочечников, яичники, семенники, плацента, тимус. Железы внут-

ренней секреции не имеют выводных протоков, а выделяют свой секрет во внутреннюю

среду организма (кровь, лимфа, ликвор). Гормоны участвуют в гуморальной регуляции

2. Свойства гормонов

Гормоны образуются в специализированных клетках эндокринных желез (эпители-

альных и нейросекреторных). Они обладают следующими свойствами:

1) высокая биологическая активность (действие в малых дозах);

3) дистантный характер действия (действие на расстоянии от той железы где он

3. Классификация гормонов

1) полипептиды и белки с наличием углеводного компонента;

2) аминокислоты и их производные;

4. Судьба гормонов в организме

1 этап – транспорт гормонов:

В) в адсорбированном виде на форменных элементах крови.

2 этап – реализация гормонального эффекта:

А) изменение активности ферментов;

Б) изменение проницаемости клеточных мембран;

3 этап – инактивация гормонов:

А) путем образования соединений с белками;

Б) путем образования соединений с глюкуроновой кислотой;

5. Механизм действия гормонов

Гормоны взаимодействуют со специальными структурами клетки – циторецепто-

рами. Различают два пути действия гормонов: 1) мембранный тип; внутриклеточный тип.

Особенности мембранного типа действия гормонов:

1) рецепторы гормонов расположены на наружной поверхности мембраны клетки-

2) гормоны не проницаемы для клеточной мембраны;

3) для осуществления эффекта гормона требуются вторичные посредники –

цАМФ, цГМФ, инозитолтрифосфат, диацилглицерол, простагландины, ионы кальция и

4) у гормонов быстрый эффект действия, так как происходит активация уже синте-

зированных ферментов в клетке. К этой группе гормонов относятся все белковые пеп-

тидные гормоны и адреналин.

Особенности внутриклеточного типа действия гормонов:

1) гормоны легко проникают внутрь клетки;

2) их рецепторы расположены в ядре, митохондриях, рибосомах, цитозоле;

3) для осуществления их эффекта действия не требуются вторичные посредники;

4) для их действия характерна глубокая и длительная перестройка клеточного ме-

таболизма, связанное с влиянием на биосинтетические процессы. Поэтому эффект дейст-

вия этих гормонов относятся стероидные и йодированные гормоны (щитовидной желе-

6. Физиологическая роль гормонов в организме:

А) обеспечение физического, полового и умственного развития;

Б) адаптация организма (приспособление к изменениям внешней и внутренней

В) поддержание гомеостаза (постоянства состава и свойств внутренней среды ор-

Г) интеграция функций отдельных органов и систем.

7. Типы воздействия гормонов на организм

Гормоны оказывают четыре типа воздействия:

А) метаболическое – влияет на различные виды обмена веществ;

Б) морфогенетическое _______действие – влияют на рост, развитие и дифференцировку

тканей и органов, созревание организма;

В) пусковое действие – активируют работу того или иного органа;

Г) корригирующие действие – изменяют функции органов в соответствии с по-

8. Регуляция образования гормонов

Различают:1) внутриклеточный механизм регуляции образования и секреции

гормонов, осуществляется за счет ферментов; 2) системный механизм.

К системным механизмам относятся:

4) неэндокринный гуморальный.

Не нашли то, что искали? Воспользуйтесь поиском:

Лучшие изречения: Только сон приблежает студента к концу лекции. А чужой храп его отдаляет. 8938 — | 7610 — или читать все.

85.95.179.227 © studopedia.ru Не является автором материалов, которые размещены. Но предоставляет возможность бесплатного использования. Есть нарушение авторского права? Напишите нам | Обратная связь.

Отключите adBlock!
и обновите страницу (F5)

очень нужно

источник

Тема 4: Физиология эндокринной системы

Физиология гипоталамо-гипофизарно-надпочечниковой системы

Учебная цель:уяснить особенности гуморальной регуляции, свойства и механизм действия гормонов, саморегуляторный принцип выделения гормонов. Усвоить значение гипоталамо-гипофизарно-надпочечниковой системы в адаптивных реакциях и в регуляции различных функций организма.

1. Железами внутренней секреции, или эндокринными железами, являются специализированные органы, которые выделяют образу­ющиеся в них продукты секреции непосредственно в кровь или тканевую жидкость. Это: гипофиз, щитовидная железу, околощитовидные железы, корковое и мозговое вещество надпочечников, островковый аппарат поджелудочной железы, половые железы, тимус, и эпифиз. Эндок­ринной активностью обладает также плацента. Кроме того, эндок­ринные клетки могут присутствовать в пищеварительном тракте, почках, сердечной мышце, вегетативных ганглиях. Эти клетки образуют так называ­емую диффузную эндокринную систему. Общей функцией для всех желез внутренней секреции является выработка гормонов.

Гормоны(греч.Ορμόνη) (греч.hormao— возбуждаю, побуждаю) — биологически активныехимические вещества, выделяемыеэндокринными железаминепосредственно в организме и оказывающие значительные физиологические эффекты наорганизмв целом либо на определённые органы и ткани-мишени. Гормоны служат гуморальными (переносимыми с кровью)регуляторамиопределённых процессов в различных органах и системах.

Химическая природа гормонов и биологически активных веществ различна. От сложности строения гормона зависит продолжительность его биологического действия, например, от долей секунды у медиаторов и пептидов до часов и суток у стероидных гормонов и йодтиронинов.

Классификация гормонов и биологически активных веществ (БАВ) по химической структуре:

Производные аминокислот: производные тирозина: тироксин, трийодтиронин, дофамин, адреналин, норадреналин; производные триптофана: мелатонин, серотонин; производные гистидина: гистамин.

Белково-пептидные гормоны: полипептиды: глюкагон, кортикотропин, меланотропин, вазопрессин, окситоцин, пептидные гормоны желудка и кишечника; простые белки (протеины): инсулин, соматотропин, пролактин, паратгормон, кальцитонин; сложные белки (гликопротеиды): тиреотропин, фоллитропин, лютропин.

Стероидные гормоны:кортикостероиды (альдостерон, кортизол, кортикостерон); половые гормоны: андрогены (тестостерон), эстрогены и прогестерон.

Производные жирных кислот: арахидоновая кислота и ее производные: простагландинм: простациклины, тромбоксаны, лейкотриены.

Функциональная классификация гормонов:

Эффекторные гормоны — гормоны, которые оказывают влияние непосредственно на орган-мишень.

Тропные гормоны — гормоны, основной функцией которых является регуляция синтеза и выделения эффекторных гормонов. Выделяются аденогипофизом.

Рилизинг-гормоны — гормоны, регулирующие синтез и выделение гормонов аденогипофиза, преимущественно тропных. Выделяются нервными клетками гипоталамуса.

Несмотря на то, что гормоны имеют разное химическое строение, для них характерны некоторые общие биологические свойства.

Строгая специфичность физиологического действия.

Высокая биологическая активность: гормоны оказывают свое физиологическое действие в чрезвычайно малых дозах.

Дистантный характер действия: клетки-мишени располагаются обычно далеко от места образования гормона.

Многие гормоны (стероидные и производные аминокислот) не имеют видовой специфичности.

Различают следующие варианты действия гормонов:

гормональное, или гемокринное,т.е. действие на значительном удалении от места образования;

изокринное, или местное,когда химическое вещество, синтезированное в одной клетке, оказывает действие на клетку, расположенную в тесном контакте с первой, и высвобождение этого вещества осуществляется в межтканевую жидкость и кровь;

нейрокринное, или нейроэндокринное (синаптическое и несинаптическое), действие, когда гормон, высвобождаясь из нервных окончаний, выполняет функцию нейротрансмиттера или нейромодулятора, т.е. вещества, изменяющего (обычно усиливающего) действие нейротрансмиттера;

паракринное — разновидность изокринного действия, но при этом гормон, образующийся в одной клетке, поступает в межклеточную жидкость и влияет на ряд клеток, расположенных в непосредственной близости;

юкстакринное – разновидность паракринного действия, когда гормон не попадает в межклеточную жидкость, а сигнал передается через плазматическую мембрану рядом расположенной другой клетки;

аутокринное действие, когда высвобождающийся из клетки гормон оказывает влияние на ту же клетку, изменяя ее функциональную активность;

солинокринное действие, когда гормон из одной клетки поступает в просвет протока и достигает таким образом другой клетки, оказывая на нее специфическое воздействие (например, некоторые желудочно-кишечные гормоны).

Каждый гормон не работает в одиночку. Поэтому необходимо учитывать возможные результаты их взаимодействия.

Синергизм — однонаправленное действие двух или нескольких гормонов. Например, адреналин и глюкагон активируют распад гликогена печени до глюкозы и вызывают увеличение уровня сахара в крови.

Антагонизмвсегда относителен. Например, инсулин и адреналин оказывают противоположные действия на уровень глюкозы в крови. Инсулин вызывает гипогликемию, адреналин — гипергликемию. Биологическое же значение этих эффектов сводится к одному — улучшению углеводного питания тканей.

Пермиссивное действиегормонов заключается в том, что гормон, сам не вызывая физиологического эффекта, создает условия для ответной реакции клетки или органа на действие другого гормона. Например, глюкокортикоиды, не влияя на тонус мускулатуры сосудов и распад гликогена печени, создают условия, при которых даже небольшие концентрации адреналина увеличивают артериальное давление и вызывают гипергликемию в результате гликогенолиза в печени.

2.Когда гормон, находящийся в крови, достигает клетки-мишени, он вступает во взаимодействие со специфическими рецепторами. Каждому конкретному гормону соответствуют исключительно «свои» рецепторы, находящиеся в конкретных органах и тканях — только при взаимодействии гормона с ними образуется гормон-рецепторный комплекс.

Существуют два основных механизма действия гормонов на уровне клетки:

Реализация эффекта с наружной поверхности клеточной мембраны.

Этот тип гормонов характеризуются тремя особенностями:

не связываются с белками-носителями;

начинают гормональный процесс, как только соединяются с рецептором, который может находиться в ядре клетки, ее цитоплазме или располагаться на поверхности плазматической мембраны.

Гормоны этого типа связываются поверхностными рецепторами, расположенными на плазматической мембране (рис.1). Различают три вида взаимодействия гормонов с плазматической мембраной. При взаимодействии первого вида гормонрецепторный комплекс, находящийся на поверхности клеток, вызывает образование так называемого второго посредника — циклического аденозин-3,5-монофосфата (цАМФ), и последующие действия гормона опосредуются цАМФ. Этот механизм характерен для некоторых белковых гормонов и биогенных аминов. При взаимодействии второго вида рецептор клеточной поверхности индуцирует продукцию или высвобождение иных вторых посредников, например кальция. Этот механизм характерен для некоторых нейротрансмиттеров. При взаимодействии третьего вида комплекс поверхностный рецептор — гормон интернализуется внутрь клетки, но последующие события остаются неясными. К последней категории гормонов относится инсулин.

Рис.1.Схема действия гормонов, рецепторы которых расположены на поверхности клетки.

Обозначения: Г — гормон, Р — рецептор, К — каталитическая субъединица протеинкиназы, Ц — цАМФ-связывающая субъединица протеинкиназы, цАМФ-циклический АМФ, АЦ— аденилатциклаза, С — субстрат, СФ — фосфорилированный субстрат, ФДЭ — фосфодиэстераза.

Реализация эффекта после проникновения гормона внутрь клетки.

Этот тип гормонов соединяется с рецепторами, находящимися внутри клеток — как правило, в цитоплазме. К ним относятся гормоны с липофильнымисвойствами — например, стероидные гормоны (половые, глюко- и минералокортикоиды), а также гормоны щитовидной железы. Будучи жирорастворимыми, эти гормоны легко проникают через клеточную мембрану и начинают взаимодействовать с рецепторами в цитоплазме или ядре. В этой группе гормонов гормон-рецепторный комплекс, образовавшись в клетке, начинает взаимодействовать с хроматином ядра и тем самым ускоряет или замедляет работу тех или иных генов и корректирует процессы метаболизма.

Рис. 2Механизм действия гормонов, рецепторы которых расположены внутри клетки.

Обозначения:Г — гормон, Б — транспортныи белок плазмы, Р — рецептор. Р•— активированный рецептор, мРНК — информационная (мессенджер) РНК.

В механизме действия гормон-рецепторного комплекса таких гормонов обязательно участвуют посредники, которые индуцируют ответ клетки. Наиболее важные из таких посредников — цАМФ (циклический аденозинмонофосфат), ионыкальция. Участие ионов кальция как посредника обеспечивает воздействие на клетки таких гормонов, каквазопрессиникатехоламины.

Выполнив свою задачу, гормоны либо расщепляются в клетках-мишенях или в крови, либо транспортируются в печень, где расщепляются, либо, удаляются из организма в основном с мочой (например, адреналин).

3.Для поддержания соответствующей концентрации гормона, эндокринный орган постоянно должен получать «информацию» о системной концентрации гормона или какой либо его функции. Эта «информация» поступает в эндокринную систему благодаря существованиюмеханизма обратной связи, которая обеспечивает передачу сведений о периферической концентрации гормона в крови обратно в секретирующий орган.

Система отрицательных обратных связей принимает участие в регуляции секреции буквально всех эндокринных органов. Положительная обратная связь проявляется значительно реже, но она также имеет место при определенных эндокринных состояниях.

Каждый тропный гормон передней доли гипофиза находится под отрицательным контролем гормонов, которые секретируются их органами-мишенями. Контролируемой переменной является концентрация гормонов в плазме, секретируемых органом-мишенью (надпочечники, гонады или щитовидная железа).

Скорость секреции гормона регулируется стимулирующим действием тропного гормона, вырабатываемого передней долей гипофиза, которая, в свою очередь, регулируется рилизинг-гормоном, секретируемым нейронами гипоталамуса. Этот отдел мозга содержит:

1) нейроны, способные реагировать на изменение концентрации в крови гормонов из органов-мишеней;

2) нулевую точку отсчета, соответствующую нормальной концентрации этих гормонов в крови.

Гипоталамус сравнивает эти два значения и, если концентрация циркулирующего гормона из органа-мишени меньше нулевой точки отсчета (нормальной концентрации), он увеличивает секрецию соответствующего рилизинг-гормона. Это повышает секрецию тропного гормона, который стимулирует секреторную активность органа-мишени до тех пор, пока концентрация гормона в плазме, вырабатываемого этим органом, не вернется к нормальному уровню. Аналогично, если концентрация гормона в плазме превышает некий определенный уровень, каскад реакций претерпевает обратные изменения, и концентрация гормона падает. При этом гормоны из органов-мишеней обнаруживают отрицательную обратную связь, и их секреция подавляется в результате снижения секреции тропных или рилизинг-гормонов или снижения секреции тех и других.

4. Гипоталамус— участок промежуточного мозгарасположенный ниже таламусаслужит местом непосредственного взаимодействия высших отделов ЦНС и эндокринной системы. В нервных клетках гипоталамуса образуются вещества, которые по системе портальных капилляров достигают гипофиза и регулируют секрецию гипофизарных гормонов, точнее их освобождение. Эти вещества получили сначала наименование нейрогормонов, а затемрилизинг-факторов(от англ.release – освобождать), или либеринов. Вещества с противоположным действием, т.е. угнетающие освобождение гипофизарных гормонов, стали называть ингибирующими факторами, или статинами.

К настоящему времени в гипоталамусе открыто 7 стимуляторов и 3 ингибитора секреции гормонов гипофиза, а именно: кортиколиберин, тиролиберин, люлиберин, фоллилиберин, соматолиберин,пролактолиберин, меланолиберин, соматостатин, пролактостатин и меланостатин.

В супраоптическом и паравентрикулярном ядрах гипоталамуса инкретируются гормоны окситоцин и вазопрессин. Нейроны, составляю­щие эти ядра, имеют длинные аксоны, которые в составе ножки гипофиза образуют гипоталамо-гипофизарный тракт и достигают задней доли гипофиза. Синтезированные в гипоталамусе окситоцин и вазопрессин доставляются в нейрогипофиз путем аксонального транспорта с помощью специального белка-переносчика, получив­шего название «нейрофизин».

Гипофиз,hypophysis(glandula pituitaria), — небольшая железа, округлой формы, связанная с головным мозгом, посредством гипофизарной ножки. Железа расположенна в турецком седле, где укреплена посредствомdiaphragma sellae turcicae. Гипофиз также называют нижним придатком мозга. В придатке мозга различают 2 доли: переднюю,lobus anterior (adenohypophysis), и заднюю,lobus posterior (neurohypophysis). Гипофиз регулирует активность ряда желез внутренней секреции и служит местом выделения гипоталамических гормонов крупноклеточных ядер гипоталамуса. Состоит издвухэмбриологически, структурно и функционально различных частей —нейрогипофиза— выроста промежуточного мозга иаденогипофиза, ведущей тканью которого служит эпителий.

5, 6. В аденогипофизе вырабатывается 6 гор­монов, из них 4 являются тропными (адренокортикотропный гор­мон, или кортикотропин, тиреотропный гормон, или тиреотропин и 2 гонадотропина — фолликулостимулирующий и лютеинизирующий гормоны), а 2 — эффекторными (соматотропный гормон, или соматотропин, и пролактин).

Адренокортикотропный гормон (АКТГ), или кортикотропин,оказывает стимулирующее действие на кору надпочечников. В большей степени его влияние выражено на пучковую зону, что приводит к увеличению образования глюкокортикоидов, в меньшей — на клубочковую и сетчатую зоны, поэтому на продукцию минералокортикоидов и половых гормонов он не оказывает значительного воздействия.

Тиреотропный гормон (ТТГ), или тиреотропин,активирует функцию щитовидной железы, вызывает гиперплазию ее железистой ткани, стимулирует выработку тироксина и трийодтиронина. Образование тиреотропина стимулируется тиреолиберином гипоталамуса, а угнетается соматостатином. Секреция тиреолиберина и тиреотропина регулируется йодсодержащими гормонами щитовидной железы по механизму обратной связи.

Фолликулостимулирующий гормон (ФСГ), или фоллитропин,вызывает рост и созревание фолликулов яичников и их подготовку к овуляции. У мужчин под влиянием ФСГ происходит образование сперматозоидов.Лютеинизирующий гормон (ЛГ), или лютропин,способствует разрыву оболочки созревшего фолликула, т.е. овуляции и образованию желтого тела, стимулирует выработку прогестерона у женщин и тестостерона у мужчин.

Соматотропный гормон (СТГ), или соматотропин, или гормон роста,принимает участие в регуляции процессов роста и физического развития. Стимуляция процессов роста обусловлена способностью соматотропина усиливать образование белка в организме, повышать синтез РНК, усиливать транспорт аминокислот из крови в клетки. Соматотропин влияет на углеводный обмен, оказывая инсулиноподобное действие. Гормон усиливает мобилизацию жира из депо и использование его в энергетическом обмене.

Пролактинстимулирует рост молочных желез и способствует образованию молока. Гормон стимулирует синтез белка —лактальбумина, жиров и углеводов молока. Пролактин стимулирует также образование желтого тела и выработку им прогестерона. Влияет на водно-солевой обмен организма, задерживая воду и натрий в организме, усиливает эффекты альдостерона и вазопрессина, повышает образование жира из углеводов.

В нейрогипофизе происходит депонирование окситоцина и антидиуретического гормона (вазопрессин).

Антидиуретический гормон (АДГ), или вазопрессин,осуществляет в организме 2 основные функции. Первая функция заключается в его антидиуретическом действии, которое выражается в стимуляции реабсорбции воды в дистальном отделе нефрона. Недостаточная секреция АДГ приводит к развитию несахарного мочеизнурения (diabetes insipidus), основными проявлениями кото­рого являются сильная жажда (полидипсия) и потеря большого количества жидкости с выделяемой мочой (полиурия). В больших дозах (фармакологических) АДГ суживает артериолы, в результате чего повышается артериальное давление.

Окситоцин оказывает стимулирующее действие на гладкую мускулатуру матки и на лактирующую молочную железу. Он усиливает сокращение миоэпителиальных клеток в молочных железах и тем самым способствует выделению молока. Окситоцин является гормоном, обеспечивающим нормальное проте­кание родового акта (отсюда произошло и его название — от лат. oxy — сильный, tokos —роды). Адекватное проявление этого эф­фекта возможно при условии достаточной концентрации в крови эстрогенов, которые усиливают чувствительность матки к окситоцину.

Меланоцитстимулирующие гормоны— гормоны средней, или промежуточной, доли гипофиза позвоночных животных и человека. Стимулирует синтез и секрецию меланинов (меланогенез) клетками-меланоцитамикожи и волос, а также пигментного слоя сетчатки глаза.

7.В надпочечниках выделяют корковое и мозговое вещество. Кор­ковое вещество включает клубочковую, пучковую и сетчатую зоны. В клубочковой зоне происходит синтез минералокортикоидов, ос­новным представителем которых является альдостерон. В пучковой зоне синтезируются глюкокортикоиды. В сетчатой зоне вырабаты­вается небольшое количество половых гормонов.

Альдостерон усиливает в дистальных канальцах почек реабсорбцию ионов Na+, одновременно увеличивая при этом выведение-с мочой ионов К + . Кроме того, под влиянием альдостерона резко возрастает почечная реабсорбция воды. Альдостерон является провоспалительным гормоном. Под влиянием альдосте­рона увеличивается также секреция ионов Н + в канальцевом ап­парате почек, что приводит к снижению их концентрации во вне­клеточной жидкости и изменению кислотно-основного состояния (алкалоз).

Основным фактором, регулирующим секрецию альдостерона, яв­ляется функционирование ренин-ангиотензин-альдостероновой си­стемы. При снижении уровня АД наблюдается возбуждение сим­патической части автономной нервной системы, что приводит к сужению почечных сосудов. Уменьшение почечного кровотока спо­собствует усиленной выработке ренина в юкстагломерулярных нефронах почек. Ренин является ферментом, который действует на плазменный α2-глобулин ангиотензиноген, превращая его в ангиотензин I. Образовавшийся ангиотензин I затем превращается в ангиотензин II, который увеличивает секрецию альдостерона. Вы­работка альдостерона может усиливаться также по механизму об­ратной связи при изменении электролитного состава плазмы крови, в частности при гипонатриемии или гиперкалиемии. В незначитель­ной степени секреция этого гормона стимулируется кортикотропином.

Глюкокортикоиды вызывают следующие эффекты:

1. Влияют на все виды обмена веществ:

а) на белковый обмен. Под влиянием глюкокортикоидов стимулируются процессы распада белка.

б) на жировой обмен. Глюкокортикоиды усиливают мобилизацию жира из жировых депо и увеличивают концентрацию жирных кислот в плазме крови. Вместе с тем увеличивается отложение жира в области лица, груди и на боковых поверхностях туловища.

в) на углеводный обмен. Введение глюкокортикоидов приводит к увеличению содержания глюкозы в плазме крови (гипергликемия). В основе этого эффекта лежит стимулирующее действие на процессы глюконеогенеза. Избыток аминокислот, образовавшихся в результате катаболизма белка, используется для синтеза глюкозы в печени. Гипергликемический эффект является одним из компонентов за­щитного действия глюкокортикоидов при стрессе.

2. Противовоспалительное действие. Глюкокортикоиды угнетают все стадии воспалительной реакции (альтерацию, экссудацию и пролиферацию), стабилизируют мембраны лизосом, что предотвра­щает выброс протеолитических ферментов, способствующих разви­тию воспалительной реакции.

3. Противоаллергическое действие. Гиперпродукция глюкокортикоидов при­водит к снижению числа эозинофилов в крови, увеличенное количество которых обычно является «маркером» аллергии.

4. Подавление иммунитета. Глюкокортикоиды угнетают как клеточный, так и гуморальный иммунитет, что связано со снижением образования антител и процессов фагоцитоза. Длительный прием глюкокортикоидов приводит к инволюции тимуса и лимфоидной ткани, являющихся иммунокомпетентными органами, вследствие чего уменьшается количество лимфоцитов в крови. Подавление иммунитета может являться серьезным побочным эффектом при длительном приеме глюкокортикоидов, поскольку при этом возра­стает вероятность присоединения вторичной инфекции. С другой стороны, этот эффект может являться терапевтическим при исполь­зовании глюкокортикоидов для подавления роста опухолей, проис­ходящих из лимфоидной ткани, или для торможения реакций от­торжения при трансплантации органов и тканей.

5. Участие в формировании необходимого уровня АД. Глюкокортикоиды повышают чувствительность сосудистой стенки к дей­ствию катехоламинов, что приводит к гипертензии.

В организме существует определенный суточный ритм выработки глюкокортикоидов. Основная масса этих гормонов вырабатывается в утренние часы (6—8 ч утра). Последнее учитывают при распре­делении суточной дозы гормонов в процессе длительного лечения глюкокортикоидами.

Продукция глюкокортикоидов регулируется кортикотропином. Его выделение усиливается при действии на организм стрессорных стимулов различной природы, что является пусковым моментом для развития адаптационного синдрома.

Половые гормоны.При избыточном образовании половых гормонов в сетчатой зоне развивается адреногенитальный синдром двух типов — гетеросексуальный и изосексуальный. Гетеросексу­альный синдром развивается при выработке гормонов противопо­ложного пола и сопровождается появлением вторичных половых признаков, присущих другому полу. Изосексуальный синдром на­ступает при избыточной выработке гормонов одноименного пола и проявляется ускорением процессов полового развития.

8. Катехоламины. В мозговом веществе надпочечников содер­жатся хромаффинные клетки, в которых синтезируются адреналин и норадреналин. Примерно 80% гормональной секреции приходится на адреналин и 20% — на норадреналин. Продукция этих гормонов резко усиливается при возбуждении симпатической части автоном­ной нервной системы. В свою очередь выделение этих гормонов в кровь приводит к развитию эффектов, аналогичных действию сти­муляции симпатических нервов. Разница состоит лишь в том, что гормональный эффект является более длительным. К наиболее важным эффектам катехоламинов относятся стимуляция деятельности сердца, вазоконстрикция, торможение перистальтики и секреции кишечника, расширение зрачка, уменьшение потоотделения, уси­ление процессов катаболизма и образования энергии. Адреналин имеет большее сродство к β-адренорецепторам, локализующимся в миокарде, вследствие чего вызывает положительные инотропный и хронотропный эффекты в сердце. С другой стороны, норадреналин имеет более высокое сродство к сосудистым α-адренорецепторам. Поэтому, вызываемые катехоламинами вазоконстрикция и увеличе­ние периферического сосудистого сопротивления в большей степени обусловлены действием норадреналина.

Вопросы для самоподготовки

Общие представления об эндокринной системе. Определение гормонов. Классификация, типы действия и функции гормонов.

Механизмы действия гормонов.

Регуляция концентрации гормонов в крови и тканях.

Гипоталамус. Гипоталамо-гипофизарная система

Гипофиз. Гормоны гипофиза. Физиологическое действие гормонов нейрогипофиза. Меланоцитостимулирующий гормон.

Гормоны аденогипофиза и их функции.

Гормоны коры надпочечников и их физиологическое действие.

Симпатоадреналовая система (гормоны, место выработки, регуляция секреции, эффекты действий).

Записать группы гормонов аденогипофиза, перечислить гормоны, входящие в каждую группу.

Зарисовать схему саморегуляции выделения гормонов.

Самостоятельная работа на занятии

Составить таблицу влияния гормонов гипоталамо-гипофизарно-надпочечниковой системы на функции организма по следующей схеме:

источник